Advertisement

The formation of the mesoderm in urodelean amphibians

IV. Qualitative evidence for the purely “ectodermal” origin of the entire mesoderm and of the pharyngeal endoderm
  • P. D. Nieuwkoop
  • G. A. Ubbels
Article

Summary

Xenoplastic recombinations of animal and vegetative parts ofAmbystoma mexicanum and Triturus alpestris blastulae, and similar recombinations of parts of3H-thymidinelabelled and unlabelledAmbystoma mexicanum blastulae demonstrate convincingly that the vegetative part (zone IV, see Nieuwkoop, 1969a) of such a recombinate does not contribute to mesoderm formation, but exclusively forms endodermal derivatives. In contrast, the animal cap of the blastula (zones I.II)—which only gives rise to atypical ectoderm if isolated—not only furnishesall the ecto-neurodermal derivatives, butall the mesodermal structures of the developing recombinate as well, and finally to a varying extent forms additional endodermal structures in the recombinate.

In the recombinates endodermization of the ectodermal cap occurred at the anterior end of the invaginated archenteron—corresponding to the presumptive pharyngeal endoderm —, and along the dorsal side of the endodermal tube, while an endoderm-like epithelium is formed at the boundary between the caudal endoderm and the ectoderm (proctodaeum formation). These results suggest that in normal development also endodermization occurs in the “ectodermal half” of the egg. This occurs particularly on the dorsal side, leading to the formation of the presumptive pharyngeal endoderm situated above the dorsal blastoporal groove.

These experiments show that the vegetative “half” of the amphibian blastula is firmly determined as the future endoderm, whereas the animal “half” is still virtually undetermined and pluripotent.

Keywords

Recombinate Developmental Biology Normal Development Dorsal Side Vegetative Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chibon, P.: Analyse expérimentale de la régionalisation et des capacités morphogénétiques de la crête neural chez l'amphibien UrodèlePleurodeles waltlii Michah. Mem. Soc. Zool. France36, 1–107 (1966).Google Scholar
  2. Kopriwa, B. M., Leblond, C. P.: Improvements in the coating technique of radioautography. J. Histochem. Cytochem.10, 269–284 (1962).Google Scholar
  3. Motomura, I.: Secretion of microsubstance in the early embryo of an amphibian,Hynobius lichenatus. Sci. Rep. Tôhoku Univ. Ser. IV (Biol.)33, 143–148 (1967).Google Scholar
  4. Nakamura, O., Takasaki, H.: Further studies on the differentiation capacity of the dorsal marginal zone in the morula ofTriturus pyrrhogaster. Proc. Jap. Acad.46, 546–551 (1970a).Google Scholar
  5. — —: Analysis of caudal factors giving rise to the organizer. I. Removal of polar blastomeres from 32 cell embryos ofXenopus laevis Proc. Jap. Acad.47, 499–504 (1971).Google Scholar
  6. — —, Ishihara, M.: Formation of the organizer from combinations of presumptive ectoderm and endoderm. I. Proc. Jap. Acad.47, 313–318 (1971).Google Scholar
  7. — —, Mizohata, T.: Differentiation during cleavage inXenopus laevis. I. Acquisition of self-differentiation capacity of the dorsal marginal zone. Proc. Jap. Acad.46, 694–699 (1970b).Google Scholar
  8. — —, Yamane, H., Obayashi, N., Kôno, S., Okamoto, H., Okumoto, T.: Inductive activity of the organizer in the morula and blastula ofTriturus pyrrhogaster. Proc. Jap. Acad.46, 700–705 (1970c).Google Scholar
  9. Nieuwkoop, P. D.: The formation of the mesoderm in urodelean amphibians. I. Induction by the endoderm. Wilhelm Roux' Archiv162, 341–373 (1969a).Google Scholar
  10. —: The formation of the mesoderm in urodelean amphibians. II. The origin of the dorsoventral polarity of the mesoderm. Wilhelm Roux' Archiv163, 298–315 (1969b).Google Scholar
  11. —: The formation of the mesoderm in urodelean amphibians. III. The vegetalizing action of the Li ion. Wilhelm Roux' Arohiv166, 105–123 (1970).Google Scholar
  12. Rogers, A. W.: Techniques of autoradiography. Amsterdam: Elsevier 1967.Google Scholar
  13. Sudarwati, Sri, Nieuwkoop, P. D.: Mesoderm formation in the anuranXenopus laevis (Daudin). Wilhelm Roux' Archiv166, 189–204 (1971).Google Scholar
  14. Sukirno, Sri Sudarwati: Developmental capacities of the presumptive germ layers of the blastula in the anuranXenopus laevis (Daud.). Thesis, Bandung (1970).Google Scholar
  15. Vogt, W.: Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. II. Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux' Arch. Entwickl.Mech. Org.120, 384–706 (1929).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • P. D. Nieuwkoop
    • 1
  • G. A. Ubbels
    • 1
  1. 1.Hubrecht LaboratoryUtrechtHolland

Personalised recommendations