Advertisement

Journal of Materials Science

, Volume 25, Issue 9, pp 3910–3916 | Cite as

Electrical resistivity changes due to interstitial hydrogen in palladium-rich substitutional alloys

  • K. Baba
  • U. Miyagawa
  • K. Watanabe
  • Y. Sakamoto
  • T. B. Flanagan
Papers

Abstract

The changes in electrical resistivity of palladium solid solution alloys (alloying element = silver, gold, copper, yttrium, cerium, titanium, zirconium, vanadium, niobium and tantalum) with hydrogen concentration were measured at 301 K up to aboutr(H/M) = 1.5×10−2; the hydrogen was introduced by electrolysis and measurements of electrode potential were also made. The specific electrical resistivity increment per unit change of hydrogen concentration, ∂Δϱ1∂r, generally increases with increase of the solute contents, although for silver, gold and copper there are no notable changes in the slopes with their concentrations. The increase in ∂Δ/g9/∂r with the alloying contents cannot be related to the lattice “dilatation” effect due to the solute, but it is associated approximately with a decrease in the density-of-states at the Fermi level caused by pre-filling of the 4 d band of palladium by the solute atoms.

Keywords

Zirconium Vanadium Palladium Cerium Niobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Lewis, “The Palladium-Hydrogen Systems” (Academic Press, New York, 1967).Google Scholar
  2. 2.
    T. B. Flanagan andF. A. Lewis,Trans. Faraday Soc. 55 (1959) 1400.Google Scholar
  3. 3.
    J. C. Barton, F. A. Lewis andI. Woodward,ibid. 59 (1963) 1201.Google Scholar
  4. 4.
    A. W. Carson, T. B. Flanagan andF. A. Lewis,ibid. 56 (1960) 363.Google Scholar
  5. 5.
    B. Baranowski, F. A. Lewis, W. D. McFall, S. Filipek andT. C. Witherspoon,Proc. Roy. Soc. London A386 (1983) 309.Google Scholar
  6. 6.
    J. C. Barton, J. A. S. Green andF. A. Lewis,Trans. Faraday Soc. 62 (1966) 960.Google Scholar
  7. 7.
    M. Laprade, K. D. Allard, J. F. Lynch andT. B. Flanagan,J. Chem. Soc. Faraday Trans. I 70 (1974) 1615.Google Scholar
  8. 8.
    D. Artman, J. F. Lynch andT. B. Flanagan,J. Less-Common Metals 45 (1976) 215.Google Scholar
  9. 9.
    K. Kandasamy, F. A. Lewis, W. D. Mcfall andR. A. Mcnicholl,Z. Phys. Chem. N.F.,163 (1989) 41.Google Scholar
  10. 10.
    D. A. Smith andI. R. Harris,Ibid. 147 (1986) 1.Google Scholar
  11. 11.
    A. W. Carson, F. A. Lewis andW. H. Schurter,Trans. Faraday Soc. 63 (1967) 1447.Google Scholar
  12. 12.
    A. Maeland, PhD thesis, University of Vermont (1964).Google Scholar
  13. 13.
    K. D. Allard, J. F. Lynch andT. B. Flanagan,Z. Phys. Chem. N.F. 93 (1974) 15.Google Scholar
  14. 14.
    D. Fisher, D. M. Chisdes andT. B. Flanagan,J. Solid Stale Chem. 20 (1977) 149.Google Scholar
  15. 15.
    R. Burch andR. G. Buss,J. Chem. Soc. Faraday Trans. I 71 (1975) 913.Google Scholar
  16. 16.
    H. Brodowsky andE. Poeschel,Z. Phys. Chem. N.F. 44 (1965) 143.Google Scholar
  17. 17.
    R. Burch andR. G. Buss,J. Chem. Soc. Faraday Trans. I 71 (1975) 922.Google Scholar
  18. 18.
    R. Burch AndN. B. Mason,ibid. 76 (1980) 2285.Google Scholar
  19. 19.
    J. D. Clewley, J. F. Lynch andT. B. Flanagan,ibid. 73 (1977) 494.Google Scholar
  20. 20.
    Y. Sakamoto, K. Kajihara, Y. Fukusaki andT. B. Flanagan,Z. Phys. Chem. N.F. 159 (1988) 61.Google Scholar
  21. 21.
    Y. Sakamoto, T. Matsuo, H. Sakai andT. B. Flanagan,ibid. 162 (1989) 83.Google Scholar
  22. 22.
    N. F. Mott andH. Jones,“The Theory of Metals and Alloys” (Oxford University Press, 1935).Google Scholar
  23. 23.
    N. Kuwano, T. Shiwaku, Y. Tomokiyo andT. Eguchi,Jpn. J. Appl. Phys. 20 (1981) 1603.Google Scholar
  24. 24.
    D. A. Smith, I. P. Jones andI. R. Harris,J. Mater. Sci. Lett. 1 (1982) 463.Google Scholar
  25. 25.
    Y. Sakamoto, T. B. Flanagan andT. Kuji,Z. Phys. Chem. N.F. 143 (1985) 61.Google Scholar
  26. 26.
    Y. Sakamoto, M. Yoshida AndT. B. Flanagan,J. Mater. Res. 1 (1986) 781.Google Scholar
  27. 27.
    K. Baba, Y. Sakamoto AndT. B. Flanagan,J. Chem. Soc. Faraday Trans. I 84 (1988) 459.Google Scholar
  28. 28.
    Y. Sakamoto, K. Kajihara, T. Kikumura andT. B. Flanagan,J. Chem. Soc. Faraday Trans. 86 (1990) 377.Google Scholar
  29. 29.
    B. Svensson,Ann. Phys. 14 (1932) 699.Google Scholar
  30. 30.
    E. Kudielka-Artner andB. B. Argent,Proc. Phys. Soc. 80 (1962) 1143.Google Scholar
  31. 31.
    Japan Institute of Metals (eds), “Metals Data Hand Book”, (Maruzen, Tokyo, 1974).Google Scholar
  32. 32.
    Y. Sakamoto, K. Yuwasa andK. Hirayama,J. Less-Common Metals 88 (1982) 115.Google Scholar
  33. 33.
    Y. Sakamoto, H. Kaneko, T. Tsukahara andS. Hirata,Scripta Metall. 21 (1987) 415.Google Scholar
  34. 34.
    Y. Sakamoto, K. Baba andT. B. Flanagan,Z. Phys. Chem. N.F. 158 (1988) 223.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • K. Baba
    • 1
  • U. Miyagawa
    • 1
  • K. Watanabe
    • 1
  • Y. Sakamoto
    • 1
  • T. B. Flanagan
    • 2
  1. 1.Department of Materials Science and EngineeringNagasaki UniversityNagasakiJapan
  2. 2.Department of ChemistryThe University of VermontBurlingtonUSA

Personalised recommendations