Planta

, Volume 150, Issue 2, pp 158–165 | Cite as

Steady state osmotic adaptation inUlva lactuca

  • D. M. Dickson
  • R. G. Wyn Jones
  • J. Davenport
Article

Abstract

The effects of hyper- and hypo-saline stresses on the levels of various inorganic and organic solutes inUlva lactuca have been recorded. Hypoosmotic stress decreased the tissue concentration of K+, Na+ and Cl- while hyper-osmotic stress caused a transient increase in Na+ and a stable accumulation of K+ and Cl-. The tissue content of β-dimethylsulphoniopropionate (β-dimethylpropiothetin) responded to changes in salinity. The time course of hypersaline stress showed the β-dimethylsulophoniopropionate concentration rose as the Na+ level fell. The levels of free sugars and amino acids, including proline, were relatively low in this alga and did not appear to be important in osmotic adjustment. The possibility that tertiary sulphonium dipolar ions have an analogous role in some algae to glycinebetaine and possibly other quaternary nitrogen compounds in higher plants as cytoplasmic osmotica is discussed briefly.

Key words

β-Dimethylsulphoniopropionate Osmoregulation Ion relations Salinity Ulva 

Abbreviations

DMSP

β-dimenthylsulphomiopropionate

AFT

apparent free space

TLE

thin layer electrophoresis

NPS

ninhydrin positive substances

TLC

thin layer chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackman, R.G., Tocher, C.S., McLachlan, T. (1966) Dimethyl-β-propiothetin. Determination by reactor gas-liquid chromatography, occurrence in algae and implication in fisheries. In: Proc. V Int. Seaweed Symp., pp. 235–242, Young, G.E., McLaughlan, J.L. eds. Pergamon Press, New YorkGoogle Scholar
  2. Barber, J. (1968) Measurement of the membrane potential and evidence for active transport of ions inChlorella pyrenoidosa. Biochim. Biophys. Acta150, 618–625Google Scholar
  3. Barber, J., Schieh, Y.L. (1973) Sodium transport in Na+ richChlorella cells. Planta3, 13–22Google Scholar
  4. Baywood, R., Challenger, F. (1953) The evoluation of dimethyl sulphide byEnteromorpha intestinalis. Isolation of dimethyl-β-carboxyethyl sulphonium chloride from the alga. Biochem. J.53, 26Google Scholar
  5. Bisson, M.A., Kirst, G.O. (1979) Osmotic adaptation in the marine algaGriffithsia manilis (Rhodophycea). The role of ions and organic compounds. Aust. J. Plant Physiol.6, 523–538Google Scholar
  6. Black, D.R. (1972) Ionic relationships ofEnteromorpha intestinalis. Ph. D. thesis, University of St. AndrewsGoogle Scholar
  7. Black, D.R., Weeks, D.C. (1972) Ionic relationships ofEnteromorpha intestinalis. New Phytol.71, 119–127Google Scholar
  8. Cantoni, G.L., Anderson, D.G. (1956) Enzymatic cleavage of dimethyl propiothetin byPolysiphonia lanosa. J. Biol. Chem.222, 171–177Google Scholar
  9. Challenger, F. (1959) Aspects of the organic chemistry of sulphur. Butterworth, LondonGoogle Scholar
  10. Challenger, F., Simpson, M.I. (1948) Studies on biological methylation. 12. A precursor of the dimethyl sulphide evolved byPolysiphonia fastigiata. Dimethyl-2-carboxyethyl sulphonium hydroxide and its salts. J. Chem. Soc.43, 1591–1597Google Scholar
  11. Challenger, F., Baywood, R., Thomas, P., Haywood, B.J. (1957) Studies on biological methylation XVII. The natural occurence and chemical reactions of some thetins. Arch. Biochim. Biophys.69, 514–523Google Scholar
  12. Dubnoff, J.W., Borsook, H. (1948) Dimethylmethin and dimethyl-β-propiothetin in methionine synthesis. J. Biol. Chem.176, 789–796Google Scholar
  13. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1965) Calorimetric method for determination of sugars and related substances. Anal. Chem.28, 350–356Google Scholar
  14. Flowers, T.J., Troke, P.F., Yeo, A.R. (1977) The mechanisms of salt tolerance in halophytes. Annu. Rev. Plant Physiol.28, 89–121Google Scholar
  15. Gilles, R. (1975) Mechanisms of ion and osmoregulation. In: Marine ecology, vol. 2, Kinne, D., ed. Wiley-Interscience, New YorkGoogle Scholar
  16. Gilles, R., Pequeux, A. (1977) Effect of salinity on the free amino acid pool of the red algaPorphyridium purpureum (=P. cruentum). Comp. Biochem. Physiol.57A, 183–185Google Scholar
  17. Greene, R.C. (1962) Biosynthesis of dimethyl-β-propiothetin inUlva lactuca. J. Biol. Chem.237, 2251–2254Google Scholar
  18. Gutknecht, J., Dainty, J. (1969) Ionic relations of marine algae. Oceanogr. Mar. Biol. Ann. Rev.6, 163–200Google Scholar
  19. Gutknecht, J., Hastings, D.F., Bisson, M.A. (1978) Ion transport and turgor pressure regulation in giant algal cells. In: Membrane transport in biology, vol. 3, Giebisch, G., Tosteson, D.C., Ussing, H.H., eds. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  20. Harborne, J.B. (1977) Flavanoid sulphates: A new class of natural products of ecological significance in plants. Progr. in Phytochem.4, 189–208Google Scholar
  21. Hellebust, J.A. (1976) Osmoregulation. Annu. Rev. Plant Physiol.27, 485–505Google Scholar
  22. Kauss, H. (1977) Biochemistry of osmotic regulation. International review of biochemistry. In: Plant biochemistry II, vol. 13, Northcote, D.H., ed. University Park Press, BaltimoreGoogle Scholar
  23. Kessler, H. (1959) Mikrokryoskopische Untersuchungen zur Turgorregulation vonChaetomorpha linum. Kiel Meeresforsch.15, 51–73Google Scholar
  24. Kirst, G.O. (1977) Co-ordination of ionic relations and mannitol concentrations in the euryhaline unicellular alga,Platymonas subcordiformis (Hazen) after osmotic shocks. Planta135, 69–75Google Scholar
  25. Kirst, G.O., Bisson, M.A. (1979) Regulation of tugor pressure in marine algae. Ions and low molecular weight organic ompounds. Aust. J. Plant Physiol.6, 539–556Google Scholar
  26. Larher, F., Hamelin, J., Stewart, G.P. (1977) L'acide dimethyl sulphonium-3-propanoique deSpartina anglica. Phytochemistry,16, 2019–2020Google Scholar
  27. Liu, M.S., Hellebust, J.A. (1976) Effects of salinity and osmolarity of the medium on amino acid metabolism inCyclotella cryptica. Can. J. Bot.54, 938–948Google Scholar
  28. Maw, G.A., du Vigneaud, V. (1948) Compounds related to dimethylthetin as sources of labile methyl groups. J. Biol. Chem.176, 1037–1045Google Scholar
  29. Munda, I.M. (1967) Der Einfluß des Salzgehaltes auf die chemische Zusammensetzung sowie Wachstum und Fruktifizierung von einigen Fucaceen. Nova Hedwigia Z. Kryptogamenkede.13, 471–508Google Scholar
  30. Munda, I.M., Kremer, B.P. (1977) The physiological properties of fucoids under conditions of reduced salinity. Mar. Biol.42, 9–15Google Scholar
  31. Pollard, A., Wyn Jones, R.G. (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta144, 291–298Google Scholar
  32. Raven, J.A. (1976) Transport in Algae Cells. In: Encyclopedia of plant physiology, N.S., vol. 2, Lüttge, U., Pitman, M.G., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. Saddler, H.W. (1970) Fluxes of Na and K inAcetabulacia mediterranea. J. Exp. Bot.21, 605–616Google Scholar
  34. Scott, G.T., Hayward, H.R. (1953a) Metabolic factors influencing the sodium and potassium distribution inUlva lactuca. J. Gen. Physiol.36, 659–671Google Scholar
  35. Scott, G.T., Hayward, H.R. (1953b) The influence of iodoacetate on the sodium and potassium content ofUlva lactuca and the prevention of its influence by light. Science117, 719–721Google Scholar
  36. Scott, G.T., Hayward, H.R. (1953c) The influence of temperature and illumination on the exchange of potassium ion inUlva lactuca. Biochim. Biophys. Acta.12, 401–404Google Scholar
  37. Scott, G.T., Hayward, K.R. (1954) Evidence for the presence of separate mechanisms regulating potassium and sodium distribution inUlva lactuca. J. Gen. Physiol.37, 601–620Google Scholar
  38. Shumway, S. (1976) Effects of fluctuating salinity on bivalue tissues, Ph. D. thesis, University of Wales, Cardiff, U.K.Google Scholar
  39. Shkedy-Vinkler, C., Avi-Dor, Y. (1975) Betaine-induced stimulation of respiration of high osmolarities in a halotolerant bacterium. Biochem. J.150, 219–226Google Scholar
  40. Sieburth, J. McN. (1960) Acrylic acid; an antibiotic principle inPhaeocystis blooms in Antarctic waters. Science132, 676–677Google Scholar
  41. Stewart, G.R., Larher, F., Ahmad, I., Lee, J.A. (1978) Nitrogen metabolism and salt tolerance in higher plant halophytes. In: Ecological processes in coastal environments, Jefferies, R.L., Davy, A.J., eds. Blackwell Scientific Publications, OxfordGoogle Scholar
  42. Storey, R. (1976) Salt resistance and quarternary ammonium compounds in plants. Ph. D. thesis. University of Wales, CarfiffGoogle Scholar
  43. Storey, R., Wyn Jones, R.G. (1977) Quarternary ammonium compounds in plants in relation to salt tolerance. Phytochemistry16, 447–453Google Scholar
  44. Storey, R., Wyn Jones, R.G. (1978) Salt stress and comparative physiology in the Gramineae. III. The effect of salt upon the ion relations and glycinebetaine and proline levels inSpartina townsendii. Aust. J. Plant Physiol.5, 831–838Google Scholar
  45. Tromballa, H.W. (1974) Der Einfluß des pH-Wertes auf die Aufnahme und Abgabe von Na durchChlorella. Planta117, 339–348Google Scholar
  46. West, K.R., Pitman, M.G. (1967) Ionic relations and ultrastructure inUlva lactuca. Aust. J. Biol. Sci.20, 901–914Google Scholar
  47. Wyn Jones, R.G., Storey, R. (1980) In: The physiology and biochemistry of drought tolerance, Paleg, L.G., Aspinall, D., eds. Academic Press, Sydney, in pressGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • D. M. Dickson
    • 1
    • 2
  • R. G. Wyn Jones
    • 1
    • 2
  • J. Davenport
    • 1
    • 2
  1. 1.Department of Biochemistry and Soil ScienceUniversity College of North WalesBangorWales, UK
  2. 2.N.E.R.C. Unit, Marine Science DepartmentUniversity College of North WalesBangorWales, UK

Personalised recommendations