Advertisement

Pflügers Archiv

, Volume 381, Issue 2, pp 171–177 | Cite as

Effects of chloride on the electrical and mechanical properties of guinea pig ventricle

  • Thomas M. Nosek
Excitable Tissues and Central nervous Physiology

Abstract

The purpose of this study was to investigate the influence of chloride on the electrical and mechanical properties of the guinea pig ventricular myocardium. Bathing media were made chloride free by substituting the relatively impermeant anion gluconate, isethionate, or sulfate. Removal of chloride increased contractility and decreased the duration of the action potential. Additional experiments explored the influence of chloride free media on electrogenic calcium influx estimated from the magnitude of the action potential in cells partially depolarized by potassium (the slow response). In the absence of chloride, transient increases occurred in the magnitude of the slow response while the positive inotropic effect was maintained. These experiments suggest that the effects of chloride free media are mediated secondarily by an enhanced calcium influx.

Key words

Chloride Slow response Calcium Contractility Transmembrane potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. R., Foulks, J. G.: Effects of anions on frog ventricle. Can. J. Physiol. Pharmacol.51, 709–726 (1973)Google Scholar
  2. Bassingthwaighte, J. B., Fry, C. H., McGuigan, J. A. S.: Relationship between internal calcium and outward current in mammalian ventricular muscle: A mechanism for the control of the action potential duration. J. Physiol. (Lond.)262, 15–37 (1976)Google Scholar
  3. Carmeliet, E. E.: Chloride ions and the membrane potential of Purkinje fibers. J. Physiol. (Lond.)156, 375–388 (1961)Google Scholar
  4. Carmeliet, E.: The ionic basis of membrane excitation in ordinary myocardial fibers: Some aspects of the sodium and calcium conductance. Recent studies on cardiac structure and metabolism, Vol. 5, pp. 3–11. Baltimore: University Park Press 1975Google Scholar
  5. Carmeliet, E., Vereecke, J.: Adrejaline and the plateau phase of the cardiac action potential. Pflügers Arch.313, 300–315 (1969)Google Scholar
  6. Carmeliet, E., Verdonck, F.: Reduction of potassium permeability by chloride substitution in cardiac cells. J. Physiol. (Lond.)265, 193–206 (1977)Google Scholar
  7. Christofferson, G. R. J., Skibsted, L. H.: Calcium ion activity in physiological salt solutions: Influence of anions substituted for chloride. Comp. Biochem. Physiol.52, 317–322 (1975)Google Scholar
  8. de Mello, W. C.: Role of chloride ions in cardiac action and pacemaker potentials. Am. J. Physiol.205, 567–575 (1963)Google Scholar
  9. Dudel, J., Peper, K., Rudel, R., Trautwein, W.: The dynamic chloride component of membrane current in Purkinje fibers. Pflügers Arch.295, 197–212 (1967)Google Scholar
  10. Fabiato, A., Fabiato, F.: Calcium release from the sarcoplasmic reticulum. Circ. Res.40, 110–129 (1977)Google Scholar
  11. Fozzard, H. A., Hiraoka, M.: The positive dynamic current and its inactivation properties in cardiac Purkinje fibers. J. Physiol. (Lond.)234, 569–586 (1973)Google Scholar
  12. Hodgkin, A. L., Horowicz, P.: The influence of potassium and chloride ions on the membrane potential of single muscle fibers. J. Physiol. (Lond.)148, 127–160 (1959)Google Scholar
  13. Hutter, O. F., Noble, D.: Anion conductance of cardiac muscle. J. Physiol. (Lond.)157, 335–350 (1961)Google Scholar
  14. Kass, R. S., Tsien, R. W.: Control of action potential duration by calcium ions in cardiac Purkinje fibers. J. Gen. Physiol.67, 599–617 (1976)Google Scholar
  15. Katz, A. M.: Physiology of the heart. New York: Raven Press 1977Google Scholar
  16. Kenyon, J. L., Gibbons, W. R.: Effects of low-chloride solutions on action potentials of sheep cardiac Purkinje fibers. J. Gen. Physiol.70, 635–660 (1977).Google Scholar
  17. Langer, G. A.: Ionic movements and the control of contraction. The mammalian myocardium, pp. 193–217. New York: Wiley 1974Google Scholar
  18. Langer, G. A.: Events at the cardiac sarcolemma: Localization and movement of contractile — dependent calcium. Fed. Proc.35, 1274–1278 (1976)Google Scholar
  19. Langer, G. A., Brady, A. J.: The effects of temperature upon contraction and ionic exchange in rabbit ventricular myocardium. J. Gen. Physiol.52, 682–713 (1968)Google Scholar
  20. Lenfant, J., Goupil, N.: Effects of the replacement of chloride by methylsulphate on the membrane currents in frog atrial trabecular. Pflügers Arch.372, 121–129 (1977)Google Scholar
  21. Lieberman, E. M., Nosek, T. M.: The influence of chloride on the ouabain-sensitive membrane potential and conductance of crayfish giant axons. Pflügers Arch.366, 195–202 (1976)Google Scholar
  22. Mascher, D.: Electrical and mechanical responses from ventricular muscle fibers after inactivation of the sodium carrying system. Pflügers Arch.317, 359–372 (1970)Google Scholar
  23. Morad, M., Greenspan, A. M.: Excitation contraction coupling as a possible site for the action of digitalis on heart muscle. Cardiac arrhythmias, pp. 479–489. New York: Green and Stratten 1973Google Scholar
  24. Niedergerke, R., Orkand, R. K.: The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration. J. Physiol. (Lond.)184, 312–334 (1966)Google Scholar
  25. Nosek, T. M.: Substitution of an impermeant anion for chloride: Its effects on the inotropic response of the guinea pig ventricle to ouabain. (Abstract) Fed. Proc.36, 501 (1977)Google Scholar
  26. Nosek, T. M., Lieberman, E. M.: The influence of an impermeant anion on the ouabain induced changes in mammalian myocardial electrical and mechanical properties. (Abstract) Fed. Proc.35, 451 (1976)Google Scholar
  27. Pappano, A. L.: Ca2+ dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by K. Circ. Res.27, 379–390 (1971)Google Scholar
  28. Polimeni, P. I., Page, E.: In vivo chloride distribution and exchange in rat ventricle. (Abstract) Fed. Proc.37, 300 (1978)Google Scholar
  29. Schneider, J. A., Sperelakis, N.: Slow Ca2+ and Na2+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea pig hearts exposed to elevated K+. J. Mol. Cell. Cardiol.7, 249–273 (1975)Google Scholar
  30. Snedecor, G. W., Cochran, W. G.: Statistical methods. Ames, Iowa: Iowa State University Press 1967Google Scholar
  31. Tritthart, H., Volkmann, R., Weiss, R., Fleckenstein, A.: Calcium-mediated action potentials in mammalian myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol.280, 239–252 (1973)Google Scholar
  32. Thyrum, P. T.: Inotropic stimuli and systolic transmembrane calcium flow in depolarized guinea-pig atria. J. Pharmacol. Exp. Ther.188, 166–179 (1974)Google Scholar
  33. Weber, A., Herz, R.: The binding of calcium to actomyosin systems in relation to their biological activity. J. Biol. Chem.238, 599–605 (1963)Google Scholar
  34. Woodbury, J. W., Miles, P. R.: Anion conductance of frog muscle membranes: One channel, two kinds of pH dependence. J. Gen. Physiol.63, 324–353 (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Thomas M. Nosek
    • 1
    • 2
  1. 1.Department of Physiology, School of MedicineMedical College of GeorgiaAugustaUSA
  2. 2.Department of Physiology and PharmacologyBowman Gray School of Medicine of Wake Forest UniversityWinston-SalemUSA

Personalised recommendations