Pflügers Archiv

, Volume 411, Issue 2, pp 160–166 | Cite as

Effect of sino-aortic denervation in comparison to cardiopulmonary deafferentiation on long-term blood pressure in conscious dogs

  • P. Persson
  • H. Ehmke
  • H. Kirchheim
  • H. Seller
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology

Abstract

The isolated and combined influence of cardiopulmonary and sinoaortic denervation on long-term blood pressure (MAP), heart rate (HR), plasma renin activity (PRA) and plasmavolume (PV) was studied in 11 conscious, chronically instrumented foxhounds receiving a normal sodium diet. MAP, HR, PV and PRA remained unchanged in the 5 dogs after bilateral thoracic vagal stripping, which eliminates the cardiopulmonary afferents. After sino-aortic denervation in another 5 dogs there was equally little change when compared to the control group. Only total baroreceptor and cardiopulmonary denervation (7 dogs) revealed significantly higher levels of MAP (119.6±4.6 vs. 100.4±1.5,P<0.01), HR (118.2±3.7; vs. 84.1±3.5;P<0.0001), and PRA (3.6±0.9 vs. 0.9±0.2;P<0.05). In conclusion, the function of either arterial baroreceptors or cardiopulmonary receptors is sufficient for normal circulatory control. When both groups of receptor afferents are interrupted, MAP, HR, and PRA rise to significantly higher levels. Thus, both systems interact in a sense of a nonadditive attenuation on “cardiovascular centres”. This may clarify previous disputes concerning neurogenic hypertension, and supplies information for the role of the renin-angiotensin system in blood pressure control.

Key words

Hypertension Long-term blood pressure Heart rate Plasma renin activity Cardiopulmonary afferents baroreceptors Plasma volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison J, Sagawa K, Kumada M (1969) An open loop analysis of aortic arch barostatic reflex. Am J Physiol 217:1576–1584Google Scholar
  2. Barron KW, Bishop VS (1985) Roles of right versus left vagal sensory nerves in cardiopulmonary reflexes of conscious dogs. Am J Physiol 249:R301-R307Google Scholar
  3. Bishop V, Barron K (1980) The contribution of vagal afferents in the regulation of the circulation in conscious dogs (1980). In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford New York Toronto, pp 91–97Google Scholar
  4. Bishop VS, Haywood JR, Shade RE, Siegel M, Hamm C (1986) Aortic baroreceptor denervation in the baboon. J Appl Physiol 60:798–801Google Scholar
  5. Bishop VS, Shade RE, Haywood JR, Hamm C (1987) Sinoaortic denervation in the nonhuman primate. Am J Physiol 252:R294-R298Google Scholar
  6. Broten T, Zehr JE, Livnat A (1987) Short-term measurements as estimates of “true” mean arterial pressure in conscious dogs. Fed Proc 46 (Abstr.):667Google Scholar
  7. Cornish KG, Gilmore JP (1985) Sino-aortic denervation in the monkey. J Physiol (Lond) 360:423–432Google Scholar
  8. Cowley AW Jr (1976) Discussion. In: Onesti G, Fernandez M, Kim KE (eds) Regulation of blood pressure by the central nervous system. Crune & Stratton, New York, pp 80–82Google Scholar
  9. Cowley AW Jr (1981) Comment. Baroreceptor denervation hypertension? Circ Res 48:587–589Google Scholar
  10. Cowley AW Jr, Liard JF, Guyton AC (1973) Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res 32:564–578Google Scholar
  11. Cowley AW Jr, Quillen W, Barber BJ (1980) Further evidence for the lack of baroreceptor control of long-term blood pressure. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford New York Toronto, pp 391–399Google Scholar
  12. DiBona GF (1983) Neural mechanisms of volume regulation. Ann Intern Med 98:750–752Google Scholar
  13. Donald DE, Edis AJ (1971) Comparison of aortic and carotid baroreceptor reflexes in the dog. J Physiol (Lond) 215:521–538Google Scholar
  14. Ehmke H, Persson P, Kirchheim H (1987a) A physiological role for pressure-dependent renin release in long-term blood pressure control. Pflügers Arch 410:450–456Google Scholar
  15. Ehmke H, Persson P, Kirchheim H (1987b) Pressure-dependent renin release: the kidney factor in long-term control of arterial blood pressure in conscious dogs. Clin Exp Hypertension A9:181–195Google Scholar
  16. Ferrario CM, McCubbin JW, Page IH (1969) Hemodynamic characteristics of chronic experimental neurogenic hypertension in unanesthetized dogs. Circ Res 24:911–922Google Scholar
  17. Geer PA, Wang BC, Goetz KL (1986) Blood pressure of sino-aortic denervated dogs is not increased by cardiac denervation. Proc Soc Exp Biol Med 181:33–40Google Scholar
  18. Gellai M, Valtin H (1981) Autoregulation of glomerular filtration rate and renal blood flow in conscious rats. In: L Takacs (ed) Advances in physiological sciences, vol 11, Kidney and blood fluids. Pergamon Press, Oxford New York, pp 217–221Google Scholar
  19. Goetz KL, Wang BC, Sundet WD (1984) Comparative effects of cardiac receptors and sinoaortic baroreceptors on elevations of plasma vasopressin and renin activity elicted by haemorrhage. J Physiol (Paris) 79:440–445Google Scholar
  20. Grassi G, Gavazzi C, Ramirez A, Sabadini E, Turolo L, Mancia G (1984) Role of cardiopulmonary receptors in reflex control of renin release in man. J Hypertension 2 (Suppl 3):263–265Google Scholar
  21. Hackenthal E, Hackenthal R, Hofbauer KG (1977) No evidence for product inhibition of the renin-angiotensin reaction in the rat. Circ Res 41 (Suppl II):49–54Google Scholar
  22. Heymans C, Neil E (1958) Reflexogenic areas of the cardiovascular system. J & A Churchill Ltd, LondonGoogle Scholar
  23. Ito CS, Scher AM (1979) Hypertension following denervation of aortic baroreceptors in unanesthetised dogs. Circ Res 45:26–34Google Scholar
  24. Ito CS, Scher AM (1981) Hypertension following arterial baroreceptor denervation in the unanesthetised dog. Circ Res 48:576–586Google Scholar
  25. Kezdi P, Kordenat KR, Arnold WL (1980) Role of vagal afferents in the tonic regulation of blood-pressure in sino-aortic deafferented dogs. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford New York Toronto, pp 431–435Google Scholar
  26. Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176Google Scholar
  27. Kirchheim HR, Finke R, Hackenthal E, Löwe W, Persson PB (1985) Sympathetic activation increases threshold pressure for the pressure-dependent renin release in conscious dogs. Pflügers Arch 405:127–135Google Scholar
  28. Kirchheim HR, Finke R, Löwe W, Persson PB (1986) Carotid sinus reflex increases threshold pressure for the pressure dependent renin release in conscious dogs. J Auton Nerv Syst 17 (Suppl): 239–246Google Scholar
  29. Koch E, Mattonet K (1934) Versuche zur Frage der arteriellen Hypertonie nach Dauerausschaltung von pressorezeptorischen Kreislaufnerven. Z Exp Med:105–113Google Scholar
  30. Koch E, Mies A (1929) Chronischer arterieller Hochdruck durch experimentelle Dauerausschaltung der Blutdruckzügler. Krankheitsforschung 7:241–256Google Scholar
  31. Krieger EM (1986) Neurogenic mechanisms in hypertension: resetting of baroreceptors. Hypertension 8 (Suppl):7–14Google Scholar
  32. Meehan JP (1986) Cardiovascular receptors and fluid volume control. Aviat Space Environ Med 57:267–275Google Scholar
  33. Morita H, Vatner SF (1985) Effects of volume expansion on renal nerve activity, blood flow, and sodium and water excretion in conscious dogs. Am J Physiol 249:F680-F687Google Scholar
  34. Nevalainen TO, Hakumäki MOK, Hyödynmaa SJ, Nähri MVO, Sarajas HSS (1980) Distension of pulmonary vein-left atrial junction: Heart rate responses in conscious and anesthetized dogs. Acta Physiol Scand 110:47–52Google Scholar
  35. Nowak SJG (1940) Chronic hypertension produced by carotid sinus and aortic depressor nerve section. Ann Surg 111:102–111Google Scholar
  36. Saito M, Naohito T, Yoshinobu N (1986) Absence of sustained hypertension in sino-aortic denervated rabbits. Am J Physiol 251:H742-H747Google Scholar
  37. Samodelov LF, Godehardt E, Arndt JO (1979) A comparison of the stimulus response curves of aortic and carotid sinus baroreceptors in cats. Pflügers Arch 383:47–53Google Scholar
  38. Scher AM (1981) Reply. Circ Res 48:589–591Google Scholar
  39. Shepherd JT (1982) Reflex control of arterial blood pressure. Cardiovasc Res 16:357–383Google Scholar
  40. Teo KK, Mah GCW, Kappagoda CT (1985) Interaction of left atrial receptors and carotid sinus baroreceptors on heart rate in the dog. Am J Physiol 248:H631-H636Google Scholar
  41. Thomas CB (1944) Experimental hypertension from section of moderator nerves. John Hopkins Hosp Bull 74:335–377Google Scholar
  42. Thorén P (1977) Characteristics of left ventricular receptors with non-medullated afferents. Circ Res 40:415–421Google Scholar
  43. Walgenbach SC, Donald DE (1983) Cardiopulmonary reflexes and arterial pressure during rest and exercise in dogs. Am J Physiol 244:H362-H369Google Scholar
  44. Walgenbach SC, Rud K (1984) Sustained interruption of the aortic baroreflex by left cervical vagotomy in dogs. Am J Physiol 246:H319-H323Google Scholar
  45. Walgenbach SC, Donald DE, Melcher A (1981) Inhibition of carotid pressure response by left aortic depressor nerve in dogs. Am J Physiol 240:H555-H560Google Scholar
  46. Walker LA, Buscemi-Bergin M, Gellai M (1983) Renal hemodynamics in conscious rats: Effects of anesthesia, surgery and recovery. Am J Physiol 245:F67-F74Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. Persson
    • 1
  • H. Ehmke
    • 1
  • H. Kirchheim
    • 1
  • H. Seller
    • 1
  1. 1.Physiologisches Institut der Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations