Skip to main content

The oxygen binding capacity of human haemoglobin

Hüfner's factor redetermined


The internationally standardized HiCN method for measuring the total haemoglobin concentration of the blood (c *Hb ) is based on the chemical composition of the haemoglobin molecule. If all haemoglobin measured in the blood by this method were active, i.e., capable of reversibly binding O2, the O2 binding capacity (β) would be 1.39 ml · g−1 The experimental values of β to be found in the literature vary over a wide range, values as low as 1.24 ml · g−1 being no exception. We determined β for 36 blood samples of healthy men, using for the determination of the O2 content 3 independent methods, i.e., a manometric, a polarographic and a chemical one. Before the measurements the blood was equilibrated with humidified pure O2 for 3 h. Appropriate corrections for dissolved O2 were made. The mean β was 1.368 ml · g−1, with a s.d. of 0.017 ml · g−1 (median 1.372 ml · g−1; range 1.322–1.387 ml · g−1). This mean β corresponds to 98.4% active haemoglobin. The inactive haemoglobin consisted of 0.7% HbCO, Hi and SHb (“dyshaemoglobin”) and 0.9% unidentified inactive haemoglobin. In 4 samples a high fraction of unidentified inactive haemoglobin was found (2.8–4.3%). Taking into account that in addition to this fraction a considerable amount of dyshaemoglobin (especially HbCO) may be present in the blood of normal men, it must be concluded that calculating the O2 carrying capacity of the blood by multiplyingc *Hb by a constant value of β, may be subject to an appreciable error. If β=1.39 ml · g−1 is used, the O2 carrying capacity of the blood may easily be found 10–15% too high.

This is a preview of subscription content, access via your institution.


  1. van Assendelft, O. W., Zijlstra, W. G.: Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures. Analyt. Biochem.69, 43–48 (1975)

    PubMed  Article  Google Scholar 

  2. Bohr, Ch.: Über die Verbindung des Hämoglobins mit Sauerstoff. Skand. Arch. Physiol.3, 76–100 (1892)

    Google Scholar 

  3. Bursaux, E., Dubos, C., Poyart, C. F.: Pouvoir oxyphorique et P50 du sang humain. Bull. Physio-Path. Resp.7, 729–742 (1971)

    CAS  Google Scholar 

  4. Carrico, R. J., Peisach, J.: The preparation, some spectral properties and the oxygen binding affinity of sulfhemoglobin. Abstract No. 252, 164th Meeting Amer. Chem. Soc. Biol. 1972

  5. Christoforides, C., Hedley-Whyte, J.: Effect of temperature and hemoglobin concentration on solubility of O2 in blood. J. appl. Physiol.27, 592–596 (1969)

    PubMed  CAS  Google Scholar 

  6. Clauvel, M., Schwartz, K.: Blood oxygen capacity. Technical difficulties of its determination by the Van Slyke method and comparison with hemoglobin content. Clin. Chem.14, 253–261 (1968)

    PubMed  CAS  Google Scholar 

  7. Dijkhuizen, P., Kwant, G., Zijlstra, W. G.: A new reference method for the determination of the oxygen content of blood. Clin. chim. Acta68, 79–85 (1976)

    PubMed  CAS  Article  Google Scholar 

  8. Evelyn, K. A., Malloy, H. T.: Microdetermination of oxyhemoglobin, methemoglobin, and sulfhemoglobin in a single sample of blood. J. biol. Chem.126, 655–662 (1938)

    CAS  Google Scholar 

  9. Fabel, H., Lübbers, D. W.: Eine schnelle Mikromethode zur serienmäßigen Bestimmung der O2-Konzentration im Blut. Pflügers Arch. ges. Physiol.281, 32–33 (1964)

    Google Scholar 

  10. Foëx, P., Prys-Roberts, C., Hahn, C. E. W., Fenton, M.: Comparison of oxygen content of blood measured directly with values derived from measurements of oxygen tension. Brit. J. Anaesth.42, 803–804 (1970)

    PubMed  Google Scholar 

  11. Gregory, I. C., Hulands, G. H., Millar, R. A.: The in vivo oxygen capacity of haemoglobin in man. J. Physiol. (Lond.)219, 31 (1971)

    Google Scholar 

  12. Gregory, I. C., Millar, R. A.: Low values, in vitro and in vivo, for the oxygen carrying capacity of haemoglobin. J. Physiol. (Lond.)236, 33–34 (1973)

    Google Scholar 

  13. Gregory, I. C.: The oxygen and carbon monoxide capacities of foetal and adult blood. J. Physiol. (Lond.)236, 625–634 (1974)

    CAS  Google Scholar 

  14. Hüfner, G.: Neue Versuche zur Bestimmung der Sauerstoffkapazität des Blutfarbstoffes. Arch. Anat. Physiol., Physiol. Abt. 130–176 (1894)

  15. Hüfner, G: Noch ein Mal die Frage nach der “Sauerstoffkapazität des Blutfarbstoffes”. Arch. Anat. Physiol., Physiol. Abt. 217–224 (1903)

  16. Hulands, G. H., Nunn, J. F., Paterson, G. M.: Calibration of polarographic electrodes with glycerol/water mixtures. Brit. J. Anaesth.42, 9–13 (1970)

    PubMed  CAS  Google Scholar 

  17. International Committee for Standardization in Haematology: Recommendations for haemoglobinometry in human blood. Brit. J. Haemat.13, (Suppl.), 71 (1967)

    Google Scholar 

  18. van Kampen, E. J., Zijlstra, W. G.: Determination of hemoglobin and its derivatives. Advanc. clin. Chem.8, 141–187 (1965)

    Article  Google Scholar 

  19. Roughton, F. J. W., Darling, R. C., Root, W. S.: Factors affecting the determination of oxygen capacity, content and pressure in human arterial blood. Amer. J. Physiol.142, 708–720 (1944)

    CAS  Google Scholar 

  20. Scherrer, M., Küng, J., Mösli, P.: Vergleich der mit dem ILCO-Oximeter-Modell 182 und der nach Van Slyke ermittelten O2-Sättigung des Blutes. Einfluß von Methämoglobin und anderen Farbstoffen. Schweiz. med. Wschr.101, 1399–1404 (1971)

    PubMed  CAS  Google Scholar 

  21. Sendroy, J., Jr., Dillon, R. T., van Slyke, D. D.: Studies of gas and electrolyte equilibria in blood. XIX The solubility and physical state of uncombined oxygen in blood. J. biol. Chem.105, 597–632 (1934)

    CAS  Google Scholar 

  22. Severinghaus, J. W., Roughton, F. J. W., Bradley, A. F.: Oxygen dissociation curve analysis at 98.7–99.6% saturation. In: Oxygen affinity of hemoglobin and red cell acid base status 65–72 (M. Rørth and P. Astrup, eds.). Copenhagen: Munksgaard 1972

    Google Scholar 

  23. Siggaard-Andersen, O., Nørgaard-Pedersen, B., Rem, J.: Hemoglobin pigments. Spectrophotometric determination of oxycarboxy-, met-, and sulfhemoglobin in capillary blood. Clin. chim. Acta42, 85–100 (1972)

    PubMed  CAS  Article  Google Scholar 

  24. van Slyke, D. D., Neill, J. M.: The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J. biol. Chem.61, 523–573 (1924)

    Google Scholar 

  25. van Slyke, D. D., Hiller, A., Weisinger, J. R., Cruz, W. O.: Determination of carbon monoxide in blood and of total and active hemoglobin by carbon monoxide capacity. Inactive hemoglobin and methemoglobin contents of normal human blood. J. biol. Chem.166, 121–148 (1946)

    Google Scholar 

  26. Theye, R. A.: Calculation of blood O2 content from optically determined Hb and HbO2. Anesthesiology33, 653–657 (1970)

    PubMed  CAS  Google Scholar 

  27. Verdier, F., Fay, M., Neukirch, F., Castillon du Perron, M., Timsit, G., Drutel, P.: Etude statistique comparative des méthodes de détermination directes, chimiques et polarographiques, et indirectes, par calcul, du contenu en oxygène sanguin. Bull. Physio-Path. Resp.10, 845–856 (1974)

    CAS  Google Scholar 

  28. Zijlstra, W. G., van Kampen, E. J., van Assendelft, O. W.: Standardization of haemoglobinometry. Establishing the reference point. Proc. kon. ned. Akad. Wet.72, 231–237 (1969)

    CAS  Google Scholar 

  29. Zijlstra, W. G., van Assendelft, O. W., Rijskamp, A.: Oxygen capacity of normal human blood. Acta physiol. pharmacol. neerl.13, 229–230 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dijkhuizen, P., Buursma, A., Fongers, T.M.E. et al. The oxygen binding capacity of human haemoglobin. Pflugers Arch. 369, 223–231 (1977).

Download citation

  • Received:

  • Issue Date:

  • DOI:

Key words

  • Oxygen binding capacity
  • Hüfner's factor
  • Haemoglobin
  • Man