Advertisement

Calcified Tissue International

, Volume 50, Issue 6, pp 502–506 | Cite as

Compact and trabecular components of the spine using quantitative computed tomography

  • Tamas Sandor
  • Dieter Felsenberg
  • Willi A. Kalender
  • Alisabet Clain
  • Edward Brown
Clinical Investigations

Summary

A computer algorithm was employed to quantify separately cortical and trabecular bone mineral density (BMD) from single energy computed tomography (CT) scans of 139 vertebrae (L1–L3) of 50 normal female subjects. In addition, the trabecular-to-integral and cortical-to-integral mass ratios were determined using digital image segmentation techniques. They showed that for the central 8-mm vertebral slice, the mass of integral bone consists of about one-fifth trabecular and four-fifth cortical bone. The trabecular-to-integral volume ratios were 0.37±0.08 and 0.63±0.08, respectively. Based on cross-sectional data from this subject group, the average annual loss was -2.21±0.15 mg/cm3 or-1.84±0.12% for trabecular bone, -3.15±0.25 mg/cm3 or-1.01±0.08% for cortical bone, and -2.60±0.20 mg/cm3 or -1.09±0.09% for the integral bone. The proportions of the age-related los of BMD from the integral bone which originated from trabecular and cortical bone were 29.5 and 70.5%, respectively.

Key words

Quantitative CT Bone mineral density Bone densitometry Spinal mineral density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mazess RB, Barden HS (1987) Single- and dual-photon absorptiometry for bone measurements in osteoporosis. In: Osteoporosis update 1987. Radiology Research and Education Foundation, San Francisco, CA, pp 75–85Google Scholar
  2. 2.
    Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL (1988) Comparison of dual energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar vertebrae. Mayo Clin Proc 63:1075–1084Google Scholar
  3. 3.
    Kelly TL, Slovik DM, Schoenfeld RM, Neer RM (1988) Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 67:839–844Google Scholar
  4. 4.
    Rockoff SD, Sweet E, Bluestein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175Google Scholar
  5. 5.
    McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 67A:1206–1214Google Scholar
  6. 6.
    Vesterby A, Mosekilde LI, Gundersen HJG, Melsen F, Mosekilde LE, Holme K, Sorensen S (1991) Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12:219–224Google Scholar
  7. 7.
    Eastell R, Mosekilde LI, Hodgson SF, Riggs BL (1990) Proportion of human vertebral body that is cancellous. J Bone Miner Res 5:1237–1241Google Scholar
  8. 8.
    Nottestad SN, Baumel JJ, Kimmel DB, Recker RR, Heany RP (1987) The proportion of trabecular bone in human vertebrae. J Bone Miner Res 2:221–229Google Scholar
  9. 9.
    Jones CD, Laval-Jeantet AM, Laval-Jeantet MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8:201–206Google Scholar
  10. 10.
    Van Berkum FNR, Birkenhager JC, Van Veen LCP, Zeelenberg J, Birkenhager-Frankel DH, Trouerbach WT, Stinen T, Pols HAP Noninvasive axial and peripheral assessment of bone mineral content: a comparison between osteoporotic women and normal subjects. J Bone Miner Res 4:679–685Google Scholar
  11. 11.
    Sandor T, Felsenberg D, Kalender WA, Brown E (1990) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72:1157–1168Google Scholar
  12. 12.
    Kalender WA, Suess CH (1987) A new-calibration phantom for quantitative computed tomography. Med Phys 14:863–866Google Scholar
  13. 13.
    Kim Young-Jo (1986) Identification of fluid regions in brain computerized tomography scans. Ph.D. Thesis, MITGoogle Scholar
  14. 14.
    Sandor T, Metcalf D, Kim YJ (1991) Segmentation of brain CT images using the concept of region growing. Int J Biomed Comp 29:133–147Google Scholar
  15. 15.
    Steiger P, Block JE, Steiger S, Heuck AF, Friedlander A, Ettinger B, Harris ST, Genant HK (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level and technique. Radiology 175:537–543Google Scholar
  16. 16.
    Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference values for trabecular and cortical bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 9:75–80Google Scholar
  17. 17.
    Pesch HJ, Scharf HP, Lauer G, Seibold H (1980) Der altersabhabgige Verbundabau der Landerwirbelkorper. Virchows Arch A Path Anat Histol 386:21–41Google Scholar
  18. 18.
    Block JE, Smith R, Gluer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4:249–257Google Scholar
  19. 19.
    Pacifici R, Susman N, Carr PL, Birge SJ, Avioli LV (1987) Single and dual energy tomographic analysis of spinal trabecular bone: a comparative study in normal and osteoporotic women. J Clin Endocrinol Metab 64:209–214Google Scholar
  20. 20.
    Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for the prediction of vertebral fracture risk. Bone 6:1–7Google Scholar
  21. 21.
    Riggs BL, Whanher HW, Dunn WL, Mazess RB, Offord KP (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67:328–335Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Tamas Sandor
    • 1
  • Dieter Felsenberg
    • 3
  • Willi A. Kalender
    • 4
  • Alisabet Clain
    • 1
  • Edward Brown
    • 2
  1. 1.Department of Radiology, Harvard Medical SchoolBrigham and Women's HospitalBostonUSA
  2. 2.Endocrine-Hypertension Division, Department of Medicine, Harvard Medical SchoolBrigham and Women's HospitalBostonUSA
  3. 3.Department of Radiology, Klinikum SteglitzFreie UniversitaetBerlinGermany
  4. 4.Siemens Medical SystemsErlangenGermany

Personalised recommendations