Advertisement

Pflügers Archiv

, Volume 389, Issue 2, pp 159–170 | Cite as

Current source density analysis: Methods and application to simultaneously recorded field potentials of the rabbit's visual cortex

  • P. Rappelsberger
  • H. Pockberger
  • H. Petsche
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology

Abstract

This paper deals with the application of current source density (CSD) analysis to simultaneously recorded intracortical field potentials of the rabbit's visual cortex. Recordings were made with multielectrodes with either 8 contacts at distances of 300 μm, or 16 contacts at distances of 150 μm on one carrier needle. For synchronized activities, a spatial resolution of 150 μm turned out to be sufficient to record all depth-varying details of the field potentials; for seizure potentials even a spacing of 300 μm was adequate in most cases.

For practical application, an appropriate spacing of the measuring points has to be chosen for a satisfactory estimation of the first and second derivatives of the field potentials. For this reason an interpolation procedure is applied to reduce the spacing from 300 μm or 150 μm electrode contact distances, respectively, and to obtain intermediate values at 75 μm distances. With this spacing satisfactory estimations of the second derivative are obtained.

Theoretically, CSD analysis has to be made three-dimensionally, but under certain conditions which are discussed, a one-dimensional analysis can be applied. An unknown quantity is σz, the vertical conductivity. It turned out that average values obtained from different experiments are not representative and that the vertical conductivity has to be measured in every experiment. This is caused by the great individual differences of the cortices even if the same stereotactic coordinates are chosen. Therefore, in every experiment relative conductivity measurements are performed. The influence of different conductivity values within the various layers and the influence of a conductivity gradient is discussed and demonstrated by examples.

Key words

Current-source-density analysis Field potentials Epileptic seizures Visual cortex Rabbit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleischhauer K, Petsche H, Wittkowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entwicklungsgesch 136:213–223Google Scholar
  2. Freeman J A, Nicholson C (1975) Experimental optimization of current source density technique for anuran cerebellum. J Neurophysiol 38:369–382Google Scholar
  3. Haberly L B, Sheperd G H (1973) Current-density analysis of summed evoked potentials in opossum prepyriform cortex. J Neurophysiol 36:789–803Google Scholar
  4. Hamming R W (1962) Numerical methods for scientists and engineers. McGraw, New YorkGoogle Scholar
  5. Hoeltzell P B, Dykes R W (1979) Conductivity in the somatosensory cortex of the cat — evidence for cortical anisotropy. Brain Res 177:61–82Google Scholar
  6. Howland B, Lettvin J Y, McCullogh W S, Pitts W, Wall P D (1955) Reflex inhibition by dorsal root interaction. J Neurophysiol 18:1–17Google Scholar
  7. Humphrey D R (1968) Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroencephalogr Clin Neurophysiol 25:421–442Google Scholar
  8. Kwan H C, Murphy J T (1974a) A Basis for extracellular current density analysis in cerebellar cortex. J. Neurophysiol 37:170–180Google Scholar
  9. Kwan H C, Murphy J T (1974b) Extracellular current density analysis of responses in cerebellar cortex to climbing fiber activation. J Neurophysiol 37:333–345Google Scholar
  10. Kwan H C, Murphy J T (1974c) Extracellular current density analysis of responses in cerebellar cortex to mossy fiber activation. J Neurophysiol 37:947–953Google Scholar
  11. Mauer J, Fleischhauer K (1979) Preferential orientation of small profiles in the neuropil of lamina I. Anat Embryol 157:133–149Google Scholar
  12. Mitzdorf U, Singer W (1977) Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. J Neurophysiol 40:1227–1244Google Scholar
  13. Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex A17 and A18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371–394Google Scholar
  14. Mitzdorf U, Singer W (1979) Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. J Comp Neurol 187:71–84Google Scholar
  15. Müller-Paschinger I B, Prohaska O, Vollmer R, Petsche H (1979) The histological marking with multiple thin-film electrode probe for intracortical recordings. Electroencephalogr Clin Neurophysiol 47:627–628Google Scholar
  16. Nicholson C, Freeman JA (1975) Theory of current source density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368Google Scholar
  17. Petsche H, Rappelsberger P, Frey Z (1972) Intracortical aspects of the synchronization of self-sustained bioelectrical activities. In: Petsche H, Brazier M A B (eds) Synchronization of EEG Activities in Epilepsies. Springer, Wien, p 263Google Scholar
  18. Petsche H, Prohaska O, Rappelsberger P, Vollmer R, Pockberger H (1977) Simultaneous laminar intracortical recordings in seizures. Electroencephalogr Clin Neurophysiol 42:414–416Google Scholar
  19. Pockberger H, Petsche H, Rappelsberger P, Müller-Paschinger I B, Prohaska O (1979) Epi- und intrakortikale Aspekte visuell evozierter Potentiale. EEG-EMG 10:184–193Google Scholar
  20. Prohaska O, Olcaytug F, Womastek K, Petsche H (1977) A multielectrode for intracortical recordings produced by thin-film technology. Electroencephalogr Clin Neurophysiol 42:421–422Google Scholar
  21. Prohaska O, Pacha F, Pfundner P, Petsche H (1979) A 16-fold semimicroelectrode for intracortical recording of field potentials. Electoencephalogr Clin Neurophysiol 47:629–631Google Scholar
  22. Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2 (Part 2):145–167Google Scholar
  23. Rappelsberger P, Petsche H, Vollmer R, Lapins R (1979a) Rhythmicity in seizure patterns: intracortical aspects. In: Speckmann E J, Caspars H (eds) Origin of cerebral field potentials. G. Thieme, Stuttgart, p 80Google Scholar
  24. Rappelsberger P, Müller-Paschinger I B, Petsche H, Pockberger H, Prohaska O, Vollmer R (1979b) Zur intrakortikalen Genese von Spontantätigkeit und Photic Driving: EEG histologische Korrelationen im optischen Kortex. EEG-EMG 10:175–183Google Scholar
  25. Rémond A Conte C (1964) Evolution temporelle et valeur moyenne de l'intensité efficace d'un EEG différentiel. Rev. Neurol 111:283Google Scholar
  26. Rose M (1931) Cytoarchitektonischer Atlas der Großhirnrinde des Kaninchens. J Physiol Neurol (Leipzig) 43:353–400Google Scholar
  27. Stoer G (1976) Einführung in die numerische Mathematik I. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  28. Thompson J M, Woolsey C N, Talbot S A (1950) Visual areas I and II of the cerebral cortex of the rabbit. J Neurophysiol 13:277–288Google Scholar
  29. Yedlin M, Kwan H C, Murphy J T, Nguyen-Huu H, Wong Y C (1974) Electrical conductivity in cat cerebellar cortex. Exp Neurol 43:555–569Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. Rappelsberger
    • 1
  • H. Pockberger
    • 1
  • H. Petsche
    • 1
  1. 1.Neurophysiologisches InstitutUniversität WienWienAustria

Personalised recommendations