Pflügers Archiv

, Volume 389, Issue 2, pp 121–126 | Cite as

Effect of calcium, furosemide and chlorothiazide on net volume reabsorption and basolateral membrane potential of the distal tubule

  • Lothar L. Hansen
  • Andreas R. Schilling
  • Michael Wiederholt
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


In the distal tubule of the isolated kidney of Amphiuma net volume reabsorption (split-oil droplet method) and basolateral membrane potential (Ψ b ) were measured. Luminal perfusion solution could be changed rapidly from 108 mmol·l−1 NaCl plus 0.1 mmol·l−1 calcium to solutions containing 103 or 97 mmol·l−1 NaCl plus 3.6 or plus 7.2 mmol·l−1 calcium. Furthermore, 10−4 mol·l−1 furosemide or chlorothiazide were applied luminally. (1) Addition of 7.2 mmol·l−1 calcium hyperpolarized Ψ b from −73.4 mV to −108.3 mV and inhibited net volume reabsorption. (2) Similarly, when furosemide was injected, Ψ b was hyperpolarized and net volume reabsorption reduced. Application of both high calcium and furosemide further inhibited volume reabsorption. (3) The effects of chlorothiazide were similar to those of furosemide. However, when both high calcium and chlorothiazide were administered Ψ b and volume reabsorption were almost normalized. (4) The data are consistent with the hypothesis that calcium and the diuretics interfere primarly with chloride uptake across the luminal membrane and thus reduce sodium chloride transport. When chlorothiazide in the presence of high luminal calcium almost normalized chloride transport, it is likely that its effects were by stimulating calcium transport and thus increasing intracellular calcium activity.

Key words

Distal renal tubule Amphiuma Basolateral membrane potential Volume reabsorption Calcium Diuretics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berridge MJ, Lindley BD, Princer WT (1975) Membrane permeability changes during stimulation of isolated salivary glands of Calliphora by 5-hydroxytryptamine. J Physiol (Lond) 244:549–567Google Scholar
  2. 2.
    Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70:33–82Google Scholar
  3. 3.
    Burg M, Stoner L, Cardinale J, Green N (1973) Furosemide effect on isolated perfused tubules. Am J Physiol 225:119–124Google Scholar
  4. 4.
    Candia OA, Montoreano R, Podos SM (1977) Effect of the ionophore A 23187 on chloride transport across isolated frog cornea. Am J Physiol 233:F94-F101Google Scholar
  5. 5.
    Costanzo LS, Windhager EE (1978) Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol 235:F492-F506Google Scholar
  6. 6.
    Degnan KJ, Zadunaisky JA (1977) The electrical properties and active ion transport across the urinary bladder of the urodeles, Amphiuma means. J Physiol (Lond) 265:207–230Google Scholar
  7. 7.
    Frizzell RA (1977) Active chloride secretion by rabbit colon: Calcium-dependent stimulation by ionophore A23187. J Membr Biol 35:175–187Google Scholar
  8. 8.
    Füllgraff G, Heidenreich O (1967) Mikropunktionsuntersuchungen über die Wirkung von Calciumionen auf die Resorptions-Kapazität und auf die prozentuale Resorption im proximalen Konvolut von Ratten. Naunyn-Schmiedeberg's Arch Pharmacol Exp Pathol 258:440–451Google Scholar
  9. 9.
    Gertz KH (1963) Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch 276:336–356Google Scholar
  10. 10.
    Hansen L, Teuscher U, Giebisch G, Wiederholt M (1975) Influence of luminally administered amiloride, ouabain, and amphotericin B on peritubular membrane potential and net volume reabsorption in the distal tubule. Pflügers Arch 359 (Suppl):R123Google Scholar
  11. 11.
    Herrera FC, Curran PF (1963) The effect of Ca and antidiuretic hormone on Na transport across frog skin. I. Examination of interrelationships between Ca and hormone. J Gen Physiol 46:999–1010Google Scholar
  12. 12.
    Imai M (1978) Calcium transport across the rabbit thick ascending limb of Henle's loop perfused in vitro. Pflügers Arch 374:255–263Google Scholar
  13. 13.
    Jamison RL, Frey NR, Lacy FB (1974) Calcium reabsorption in the thin loop of Henle. Am J Physiol 227:745–751Google Scholar
  14. 14.
    Kinne R (1976) Membrane-molecular aspects of tubular transport. In: K Thurau (ed) International review of physiology. Kidney and urinary tract physiology, vol II. University Park Press, Baltimore. p 169Google Scholar
  15. 15.
    Kunau RT Jr, Weller DR, Webb HL (1975) Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest 56:401–407Google Scholar
  16. 16.
    Lassen UV, Pape L, Vestergaard-Bogind B, Bengtson O (1974) Calcium-related hyperpolarization of the Amphiuma red cell membrane following micropuncture. J Membr Biol 18:125–144Google Scholar
  17. 17.
    Lassiter WE, Gottschalk CW, Mylle M (1963) Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am J Physiol 204:771–775Google Scholar
  18. 18.
    Rocha AS, Magaldi JB, Kokko JP (1977) Calcium and phosphate transport in isolated segments of rabbit Henle's loop. J Clin Invest 59:975–983Google Scholar
  19. 19.
    Ruf W, Ebel H (1978) Effect of cyclic AMP on endogenous protein kinase and membrane associated calcium in renal brush borders and basolateral membranes. Proc. VIIth Int. Congr. Nephrol., Montreal Abstract No. E-1Google Scholar
  20. 20.
    Sharegi GP, Stoner LC (1978) Calcium transport across segments of the rabbit distal nephron in vitro. Am J Physiol 235:F367-F375Google Scholar
  21. 21.
    Stoner LC (1977) Isolated, perfused amphibian renal tubules: the diluting segment. Am J Physiol 233:F438-F444Google Scholar
  22. 22.
    Suki WN (1979) Calcium transport in the nephron. Am J Physiol 237:F1-F6Google Scholar
  23. 23.
    Sutton RAL, Dirks JH (1975) The renal excretion of calcium: a review of micropuncture data. Can J Physiol Pharmacol 53:979–988Google Scholar
  24. 24.
    Taylor A, Windhager EE (1979) Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport. Am J Physiol 236:F505-F512Google Scholar
  25. 25.
    Ullrich KJ, Rumrich G, Klöss S (1976) Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Pflügers Arch 364:223–228Google Scholar
  26. 26.
    Vogel G, Stoeckert I (1967) Die Bedeutung des Natriums für den renal-tubulären Calcium-Transport beiRana ridibunda. Pflügers Arch 298:23–30Google Scholar
  27. 27.
    Walser M (1971) Calcium-sodium interdependence in renal transport. In: Fischer JW (ed) Renal pharmacology. Appleton-Century-Crofts, New York, p 21Google Scholar
  28. 28.
    Wiederholt M, Sullivan WJ, Giebisch G (1971) Potassium and sodium transport across single distal tubules of Amphiuma. J Gen Physiol 57:495–525Google Scholar
  29. 29.
    Wiederholt M, Giebisch G (1974) Some electrophysiological properties of the distal tubule of the Amphiuma kidney. Fed Proc 33:387Google Scholar
  30. 30.
    Wiederholt, M, Hansen L, Giebisch G (1978) Effect of amphotericin B on distal peritubular membrane potential and net volume reabsorption. VIIth Int Congr Nephrol, Montreal, C-11Google Scholar
  31. 31.
    Wiederholt M, Hansen L, Teuscher U (1977) Characterization of distal tubular transport by diuretics. Kidney Int 11:221Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Lothar L. Hansen
    • 1
  • Andreas R. Schilling
    • 1
  • Michael Wiederholt
    • 1
  1. 1.Institut für Klinische Physiologie, Klinikum SteglitzFreie Universität BerlinBerlin 45

Personalised recommendations