Advertisement

Pflügers Archiv

, Volume 389, Issue 2, pp 115–120 | Cite as

Rapid rise in plasma glucagon induced by acute cold exposure in man and rat

  • Hans J. Seitz
  • Wilhelm Krone
  • Harald Wilke
  • Wolfgang Tarnowski
  • D. Carsten
  • B. Dunkelmann
  • A. Harneit
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands

Abstract

The effect of acute cold exposure on the concentration of glucagon in the blood was investigated in man and in intact and adrenalectomized rats.

In man fasted overnight acute cold exposure, which caused a twofold increase in O2-consumption resulted in a rapid rise in plasma glucagon. The levels of insulin and blood glucose remained unaltered, while the concentration of serum free fatty acids and β-hydroxybutyrate increased.

In fasted intact rats acute cold exposure lead to similar effects. A close parallelism between the rise in plasma glucagon and the concentration of hepatic cycloAMP was observed. Adrenalectomy did not impair the cold induced rise in plasma glucagon and hepatic cycloAMP.

It is concluded that acute cold exposure caused a rapid rise in the concentration of plasma glucagon leading to an increase in the concentration of hepatic cycloAMP, thus enhancing the rate of hepatic gluconeogenesis and ketogenesis. As these alterations were similar in the absence of glucocorticoids and medulla-derived catecholamines, it is suggested that glucagon may play a role in the metabolic adaptation to acute cold exposure.

Key words

Cold exposure Glucagon cycloAMP Insulin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnett EL, Watts DT (1960) Catecholamine excretion in men exposed to cold. J Appl Physiol 15:499–500Google Scholar
  2. 2.
    Bergmeyer HU, (1970) Methoden der enzymatischen Analyse, 2. Aufl. Verlag Chemie, WeinheimGoogle Scholar
  3. 3.
    Blackard WG, Nelson NC, Andrews SS (1974) Portal and peripheral vein immunoreactive glucagon concentrations after arginine or glucose infusions. Diabetes 23:199–202Google Scholar
  4. 4.
    Buskirk ER, Kollias J (1969) Total body metabolism in the cold. Bull. New Jersey Acad Sci, March 1969, 17–25Google Scholar
  5. 5.
    Duncombe WG (1964) The colorimetric microdetermination of nonesterified fatty acids in plasma. Clin Chim Acta 9:122–128Google Scholar
  6. 6.
    Exton JH, Malette LE, Jefferson LS, Wong EHA, Friedmann N, Miller TB Jr, Park CR (1970) The hormonal control of hepatic gluconeogenesis. Recent Prog Horm Res 26:411–457Google Scholar
  7. 7.
    Exton JH, Robison GA, Sutherland EW, Park CR (1971) Studies on the role of adenosine 3′,5′-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem 246:6166–6177Google Scholar
  8. 8.
    Exton JH, Park CR (1972) Interaction of insulin and glucagon in the control of liver metabolism. In: Steiner DF, Freinkel N (eds) Handbook of Physiology, vol 1, sect 7. American Physiological Society, Washington, D.C. p 437Google Scholar
  9. 9.
    Faloona GR, Unger RH (1974) Glucagon. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay, Academic Press, New York, p 317Google Scholar
  10. 10.
    Faupel RP, Seitz HJ, Tarnowski W, Thiemann W, Weiss C (1972) The problem of tissue sampling from experimental animals with respect to freezing technique, anoxia, stress and narcosis. Arch Biochem Biophys 148:509–522Google Scholar
  11. 11.
    Forichon J, Jomain MJ, Dallevet G, Minaire Y (1976) Reversible and irreversible glucose disposal in dogs: influence of fasting and cold exposure. Metabolism 25:897–902Google Scholar
  12. 12.
    Forichon J, Jomain MJ, Patricot MC, Minaire Y (1977) Tolerance to cold and glucose homeostasis in adrenal demedullated dogs. Experientia 33:1070–1072Google Scholar
  13. 13.
    Forichon J, Jomain MJ, Schellhorn J, Minaire Y (1977) Effect of epinephrine upon irreversible disposal and recycling of glucose in dogs. Experientia 33:1170–1173Google Scholar
  14. 14.
    Gerich JE, Charles MA, Grodsky GM (1976) Regulation of pancreatic insulin and glucagon secretion. Ann Rev Physiol 38:353–388Google Scholar
  15. 15.
    Gilman AG (1970) A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc Natl Acad Sci USA 67:305–312Google Scholar
  16. 16.
    Goldstein-Golaire J, Vanhaelst L, Bruno OD, Leclercq R, Copinschi G (1970) Acute effects of cold on blood levels of growth hormone, cortisol, and thyrotropin in man. J Appl Physiol 29:622–626Google Scholar
  17. 17.
    Himms-Hagen J (1975) Role of the adrenal medulla in adaptation to cold. In: Handbook of physiology sect 7, vol 6, p 637Google Scholar
  18. 18.
    Krone W, Huttner WB, Seitz HJ, Tarnowski W (1976) Induction of rat liver phosphoenolpyruvate carboxykinase (GTP) by cyclic AMP during starvation. The permissive action of glucocorticoids. Biochim Biophys Acta 437:62–70Google Scholar
  19. 19.
    Leduc J (1961) Catecholamine production and release in exposure and acclimation to cold. Acta Physiol Scand 53: (Suppl) 183:1–101Google Scholar
  20. 20.
    Mager M, Robinson SM (1969) Substrate mobilization and utilization in fasting men during cold exposure. Bull New Jersey Acad Sci, March 1969, p 26Google Scholar
  21. 21.
    Meade RC, Klitgaard HN (1962) A simplified method for immunoassay of human serum insulin. J Nucl Med 3:407–416Google Scholar
  22. 22.
    Minaire Y, Vincent-Falquet J-C, Pernod A, Chatonnet J (1973) Energy supply in acute cold-exposed dogs. J Appl Physiol 35:51–57Google Scholar
  23. 23.
    Nilsson L, Hultman E (1973) Liver glycogen in man — the effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. Scand J Clin Lab Invest 22:325–330Google Scholar
  24. 24.
    Pauk GL, Reddy WJ (1971) Evaluation of the liver adenosine 3′,5′-monophosphate response to glucagon. Diabetes 20:129–133Google Scholar
  25. 25.
    Penner PE, Himms-Hagen J (1968) Gluconeogenesis in rats during acute cold acclimation. Can J Biochem 46:1205–1213Google Scholar
  26. 26.
    Sterling K, Lazarus JH (1977) The thyroid and its control. Ann Rev Physiol 39:349–371Google Scholar
  27. 27.
    Suzuki M, Tonoue T, Matsuzaki S, Yamamoto K (1967) Initial response of human thyroid, adrenal cortex, and adrenal medulla to acute cold exposure. Can J Physiol Pharmacol 45:423–432Google Scholar
  28. 28.
    Unger RH, Orci L (1976) Physiology and pathophysiology of glucagon. Physiol Rev 56:778–826Google Scholar
  29. 29.
    Usategui R, Gillioz P, Oliver C (1977) Effect of cold exposure on α-MSH and ACTH release in the rat. Horm Metab Res 9:519Google Scholar
  30. 30.
    Williamson DH, Mellanby J, Krebs HA (1962) Enzymatic determination of D(−)-β-hydroxybutyric acid and acetoacetic acid in blood. Biochem J 82:90–96Google Scholar
  31. 31.
    Wilson O, Hedner P, Laurell S, Nosslin B, Rerup C, Rosengren E (1970) Thyroid and adrenal response to acute cold exposure in man. J Appl Physiol 28:543–548Google Scholar
  32. 32.
    Young JB, Landsberg L (1979) Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver. Am J Physiol 263E:524-E533Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Hans J. Seitz
    • 1
  • Wilhelm Krone
    • 1
  • Harald Wilke
    • 2
  • Wolfgang Tarnowski
    • 1
  • D. Carsten
    • 1
    • 2
  • B. Dunkelmann
    • 1
    • 2
  • A. Harneit
    • 1
    • 2
  1. 1.Institut für Physiologische ChemieUniversitäts-Krankenhaus Eppendorf, Universität HamburgHamburg 20Federal Republic of Germany
  2. 2.II. Medizinische KlinikUniversitäts-Krankenhaus Eppendorf, Universität HamburgHamburg 20Federal Republic of Germany

Personalised recommendations