Pflügers Archiv

, Volume 389, Issue 2, pp 91–95 | Cite as

Localization of kallikrein-like activity along a single nephron in rabbits

  • Kimio Tomita
  • Hitoshi Endou
  • Fuminori Sakai
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


In order to investigate the presence of renal kallikrein, the localization of kallikrein-like proteolytic activity along a single nephron was determined in rabbits. Single nephrons were dissected into 8 segments under a microscope. Activity was fluorometrically measured with two different substrates (benzyl-l-arginine ethyl ester: BAEE and prolyl-phenylalanylarginine-methylcoumarin amide: MCA). Proteolytic activity could be detected in the early (S1), the middle (S2), and the terminal (S3) portions of the proximal tubule and in the granular portion of the distal tubule (DCTg). With MCA, the specific activity in S1, S2, S3 and DCTg was 0.77±0.08, 0.28±0.10, 0.13±0.05, and 0.27±0.05 pmoles/μg/min, respectively. The activity in DCTg was inhibited by aprotinin but that in the proximal tubules was not inhibited. No activity was found in the glomerulus, the thick ascending limb of Henle's loop, the bright portion of the distal tubule, and the light portion of the cortical collecting tubule. The inhibition of the activity by aprotinin in DCTg suggests that intrarenal kallikrein could be localized only in DCTg.

Key words

Renal kallikrein Kallikrein-like activity Aprotinin Microdissection Single nephron Distal convoluted tubule Granular portion of distal convoluted tubule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baggio B, Favaro S, Antonello A, Zen A, Zen F, Borsatti A (1975) Subcellular localization of renin and kallikrein in rat kidney. Ital J Biochem 24:199–206Google Scholar
  2. Chao J, Margolius HS (1979) Studies on rat renal cortical cell kallikrein. II. Identification of kallikrein as an ecto-enzyme. Biochim Biophys Acta 570:330–340Google Scholar
  3. Crayen M, Thoenes W (1975) Architektur und cytologische Charakterisierung des distalen Tubulus der Rattenniere. Fortschr Zool 23:279–288Google Scholar
  4. Derkx FHM, Tan-Tjiong HL, Veld JM, Schalekamp MPA, Schalekamp MADH (1979) Activation of inactive plasma renin by plasma and tissue kallikreins. Clin Sci 57:351–357Google Scholar
  5. Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171Google Scholar
  6. Elliot AH, Nuzum FR (1934) The urinary excretion of a depressor substance (kallikrein of Frey and Kraut) in arterial hypertension. Endocrinology 18:462–474Google Scholar
  7. Holland OB, Chud JM, Braunstein H (1980) Urinary kallikrein excretion in essential and mineralocorticoid hypertension. J Clin Invest 65:347–356Google Scholar
  8. Imai M (1979) The connecting tubule: A functional subdivision of the rabbit distal nephron segments. Kidney Int 15:346–356Google Scholar
  9. Imbert M, Chabardès D, Montégut D, Clique A, Morel F (1975) Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflügers Arch 354:213–228Google Scholar
  10. Just M, Török P, Habermann E (1972) Interaction of trasylol with subcellular structures of the kidney. In: Haberland GL, Rohen JW (eds) Kininogenases. Schattauer Verlag, New York, p 123Google Scholar
  11. Kaizu T, Margolius HS (1975) Studies on rat renal cortical cell kallikrein. I. Separation and measurement. Biochim Biophys Acta 411:305–315Google Scholar
  12. Kriz W, Kaissling B (1978) Anatomical and ultrastructural studies upon heterogeneity of nephrons in the rabbit kidney. In: Proceedings 7th Int. Congr. Nephrol, Montreal, S. Karger, Basel p 217Google Scholar
  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  14. Mann K, Geiger R, Werle E (1976) A sensitive kinin liberating assay for kininogenase in rat urine, isolated glomeruli and tubules of rat kidney. Adv Exp Med Biol 70:65–73Google Scholar
  15. Margolius HS, Geller R, Pisano JJ, Sjoerdsma A (1971) Altered urinary kallikrein excretion in human hypertension. Lancet II: 1063–1065Google Scholar
  16. Margolius HS, Horwitz D, Pisano JJ, Keiser HR (1974) Urinary kallikrein excretion in hypertensive man. Relationships to sodium intake and sodium-retaining steroids. Circ Res 35:820–825Google Scholar
  17. Mitas JA, Levy SB, Holle R, Frigon RP, Stone RA (1978) Urinary kallikrein activity in the hypertension of renal parenchymal disease. New Engl J Med 299:162–165Google Scholar
  18. Morel F, Chabardès D, Imbert M (1976) Functional segmentation of the rabbit distal tubule by microdetermination of hormonedependent adenylate cyclase activity. Kidney Int 9:264–277Google Scholar
  19. Morita T, Kato H, Iwanaga S, Takada K, Kimura T, Sakakibara S (1977) New fluorogenic substrates for α-thrombin, factor xa, kallikreins and urokinase. J Biochem 82:1495–1498Google Scholar
  20. Nustad K (1970a) The relationship between kidney and urinary kininogenase. Br J Pharmacol 39:73–86Google Scholar
  21. Nustad K (1970b) Localization of kininogenase in the rat kidney. Br J Pharmacol 39:97–98Google Scholar
  22. Nustad K, Rubin I (1970) Subcellular localization of renin and kininogenase in the rat kidney. Br J Pharmacol 40:326–333Google Scholar
  23. Nustad K, Pierce JV, Vaaje K (1975) Synthesis of kallikreins by rat kidney slices. Br J Pharmacol 53:229–234Google Scholar
  24. Örstavik TB, Nustad K, Brandtzaeg P, Pierce JV (1976) Cellular origin of urinary kallikreins. J Histochem Cytochem 24:1037–1039Google Scholar
  25. Overlack A, Stumpe KO, Ressel C, Kolloch R, Zywzok W, Krück F (1980) Decreased urinary kallikrein activity and elevated blood pressure normalized by orally applied kallikrein in essential hypertension. Klin Wochenschr 58:37–42Google Scholar
  26. Scicli AG, Carretero OA, Oza NB, Schork MA (1976a) Distribution of kidney kininogenases. Proc Soc Exp Biol Med 151:57–60Google Scholar
  27. Scicli AG, Carretero OA, Hampton A, Cortes P, Oza NB (1976b) Site of kininogenase secretion in the dog nephron. Am J Physiol 230:533–536Google Scholar
  28. Sealey JE, Atlas SA, Laragh JH, Oza NB, Ryan JW (1978) Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin. Nature 275:144–145Google Scholar
  29. Seino M, Abe K, Otsuka Y, Saito T, Irokawa N, Yasujima M, Chiba S, Yoshinaga K (1975) Urinary kallikrein excretion and sodium metabolism in hypertensive patients. Tohoku J Exp Med 116:359–367Google Scholar
  30. Simson JAV, Spicer SS, Chao J, Grimm L, Margolius HS (1979) Kallikrein localization in rodent salivary glands and kidney with the immunoglobulin-enzyme bridge technique. J Histochem Cytochem 27:1567–1576Google Scholar
  31. Trautschold I (1965) Enzyme und Inhibitoren der Bildung und des Abbaues gefäßaktiver Polypeptide(kinine). Habilitationsschrift der Med. Fakultät MünchenGoogle Scholar
  32. Trautschold I, Werle E, Schweitzer G (1974) Kallikrein. In: Bergmeyer HV (ed) Method in enzymic analysis. vol 2, Academic Press, New York, p 1031Google Scholar
  33. Tyler DW (1978) Localization of renal kallikrein in the dog. Experimentia 34:621–622Google Scholar
  34. Ward PE, Gedney CD, Dowben RM, Erdös EG (1975) Isolation of membrane-bound renal kallikrein and kininase. Biochem J 151:755–758Google Scholar
  35. Ward PE, Erdös EG, Gedney CD, Dowben RM, Reynolds RC (1976) Isolation of membrane-bound renal enzymes that metabolize kinins and angiotensins. Biochem J 157:643–650Google Scholar
  36. Werle E, Vogel R (1960) Über die Kallikreinausscheidung im Harn nach experimenteller Nierenschädigung. Arch Int Pharmacodyn 126:171–186Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Kimio Tomita
    • 1
  • Hitoshi Endou
    • 1
  • Fuminori Sakai
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineUniversity of TokyoTokyoJapan

Personalised recommendations