Skip to main content
Log in

Effects of carbon monoxide or low oxygen gas mixture inhalation on regional oxygenation, blood flow, and small vessel blood content of the rabbit heart

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The effects of lowering arterial O2 content, approximately 30%, by inspiration of low O2 or CO gas mixtures on regional myocardial relative tissue\(P_{O_2 } \), perfusion and small vessel blood content were studied in anesthetized, thoracotomized New Zealand white rabbits. Relative tissue\(P_{O_2 } \) and perfusion were determined polarographically.59FeCl3 was used to determine small vessel blood content. In control, relative tissue\(P_{O_2 } \), perfusion and small vessel blood content averaged 33.1 mm Hg, 64.9 ml/min/100 g and 4.3 ml/100 g respectively in the subepicardium (EPI) and 22.7, 53.6 and 4.2 in the subendocardium (ENDO) of the left ventricle. Both hypoxic conditions increased regional blood flow, but to a lesser extent in the ENDO. Relative ENDO tissue\(P_{O_2 } \) fell more markedly than EPI in both conditions. Small vessel blood content increased more with CO than low O2. Regional O2 consumption, calculated by Krogh analysis, increased under both conditions. The response to lowered O2 content is thus an increase in flow, metabolic rate and the number of open capillaries with a lowered driving pressure for O2. The effects of these types of hypoxia appear more severe in the ENDO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, H., Strauss, H. W., Ochi, H., Wagner, H. N., Jr.: The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ. Res.39, 314–319 (1976)

    Google Scholar 

  2. Aukland, K., Bower, B. F., Berliner, R. W.: Measurement of local blood flow with hydrogen gas. Circ. Res.14, 164–187 (1964)

    Google Scholar 

  3. Ayres, S. M., Giannelli, S., Jr., Mueller, H.: Myocardial and systemic responses to carboxyhemoglobin. Ann. N.Y. Acad. Sci.174, 268–293 (1970)

    Google Scholar 

  4. Ayres, S. M., Grannelli, S., Jr., Mueller, H., Criscitiello, A.: Concentrations of carboxyhemoglobin. Ann. Clin. Lab. Sci.3, 440–447 (1973)

    Google Scholar 

  5. Ayres, S. M., Giannelli, S., Jr., Mueller, H.: Carboxyhemoglobin and access to oxygen. Arch. Environ. Health,26, 8–15 (1973b)

    Google Scholar 

  6. Bernc, R. M., Blackman, J. R., Gardner, T. H.: Hypoxemia and coronary blood flow. J. Clin. Invest.36, 1101–1106 (1957)

    Google Scholar 

  7. Bourdeau-Martini, J., Odoroff, C. L., Honig, C. R.: Dual effect of oxygen on magnitude and uniformity of coronary intercapillar distance. Am. J. Physiol.276, 800–810 (1974)

    Google Scholar 

  8. Flohr, H., Bruell, W.: Effect of etafenone on total and regional myocardial blood flow. Arzneim. Forsch.25, 1400–1403 (1975)

    Google Scholar 

  9. Gross, G. J., Winbury, M. M.: Beta adrenergic blockade on intramyocardial distribution of coronary blood flow. J. Pharmacol. Exp. Ther.187, 451–464 (1973)

    Google Scholar 

  10. Howe, B. B., Weiss, H. R., Wilkes, S. B., Winbury, M. M.: Pentaerythritol trinitrate and glyceryl trinitrate on intramyocardial oxygenation and perfusion in the dog. Krogh analysis of transmural metabolism. Clin. Exp. Pharmacol. Physiol.2, 529–540 (1975)

    Google Scholar 

  11. Inch, W. R.: Problems associated with the use of exposed platinum electrodes for measuring oxygen tension in vivo. Can. J. Biochem. Physiol.36, 1009–1021 (1958)

    Google Scholar 

  12. Kety, S. S.: Determinants of tissue oxygen, tension. Fed. Proc.16, 666–670 (1957)

    Google Scholar 

  13. Moir, T. W.: Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ. Res.30, 621–627 (1972)

    Google Scholar 

  14. Moss, A. J.: Intramyocardial oxygen tension. Cardiovasc. Res.3, 314–318 (1968)

    Google Scholar 

  15. Myers, W. W., Honig, C. R.: Number and distribution of capillaries as determinants of myocardial oxygen tension. Am. J. Physiol.207, 653–660 (1964)

    Google Scholar 

  16. Powers, E. R., Powell, W. J., Jr.: Effect of arterial hypoxia on myocardial oxygen consumption. Circ. Res.33, 749–756 (1973)

    Google Scholar 

  17. Rakusan, K., Wachtlova, M., Poupa, O.: An attempt to determine indirectly the vascularity of the heart muscle by measuring the tissue concentration of hemoglobin in the normal and anemic rats. Physiol. Bohemoslov.18, 1–5 (1969)

    Google Scholar 

  18. Rubio, R., Berne, R. M.: Regulation of coronary blood flow. Prog. Cardiovasc. Dis.18, 105–122 (1975)

    Google Scholar 

  19. Scharf, S. M., Permutt, S., Bromberger-Barnea, B.: Effects of hypoxia and CO hypoxia on isolated hearts. J. Appl. Physiol.39, 752–758 (1975)

    Google Scholar 

  20. Silver, I. A.: The measurement of oxygen tension in tissues. In: Oxygen measurement in blood and tissues (J. P. Payne, D. W. Hill, eds.), p. 135. London: J. A. Churchill 1966

    Google Scholar 

  21. Van der Laarse, A., Freud, G. E.: Multiple measurement of intramural myocardial oxygen tension. In: Recent advances in studies on cardiac structure and metabolism, Vol. 5, (A. Fleckenstein, N. S. Dhalla, eds.), p. 441. Baltimore: University Park Press 1975

    Google Scholar 

  22. Weiss, H. R.: Control of myocardial oxygenation — effects of atrial pacing. Microvasc. Res.8, 362–376 (1974)

    Google Scholar 

  23. Weiss, H. R., Cohen, J. A.: Effects of low levels of carbon monoxide on rat brain and muscle tissuepO2. Environ. Physiol. Biochem.4, 31–39 (1974)

    Google Scholar 

  24. Weiss, H. R., Edelman, N. H.: Effect of hypoxia on small vessel blood content of rabbit brain. Microvasc. Res.12, 305–315 (1975)

    Google Scholar 

  25. Weiss, H. R., Sinha, A. K.: Regional oxygen consumption of the dog heart. Fed. Proc.35, 345 (1976)

    Google Scholar 

  26. Weiss, H. R., Winbury, M. M.: Nitroglycerin and chromonar on small vessel blood content of the ventricular walls. Am. J. Physiol.226, 838–843 (1974)

    Google Scholar 

  27. Weiss, H. R., Cohen, J. A., McPherson, L. A.: Changes in blood flow and tissue\(P_{O_2 } \) of brain and muscle — effect of various gas mixtures. Am. J. Physiol.230, 839–844 (1976)

    Google Scholar 

  28. Weiss, H. R., Lipp, J. A., Neubauer, J. A., Feldman, R. S.: Effect of alpha and beta adrenergic blockade on oxygen transport in rat skeletal muscle and brain. J. Pharmacol. Exp. Ther.198, 403–411 (1976b)

    Google Scholar 

  29. Winbury, M. M., Howe, B. B., Weiss, H. R.: Effect of nitroglycerin and dipyridamole on epicardial and endocardial oxygen tension-further evidence for redistribution of myocardial blood flow. J. Pharmacol. Exp. Ther.176, 184–199 (1971)

    Google Scholar 

  30. Young, S. H., Stone, H. L.: Effect of a reduction in arterial oxygen content (carbon monoxide) on coronary flow. Aviat. Space Environ. Med.47, 142–146 (1976)

    Google Scholar 

  31. Yodilevich, D., Martin, P.: Potassium, sodium and iodide transcapillary exchange in the dog heart. Am. J. Physiol.208, 959–967 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinert, H.D., Scales, J.L. & Weiss, H.R. Effects of carbon monoxide or low oxygen gas mixture inhalation on regional oxygenation, blood flow, and small vessel blood content of the rabbit heart. Pflugers Arch. 383, 105–111 (1980). https://doi.org/10.1007/BF00581870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581870

Key words

Navigation