Pflügers Archiv

, Volume 355, Issue 2, pp 125–139 | Cite as

Transcellular ion route in rabbit gallbladder

Electric properties of the epithelial cells
  • S. Hénin
  • D. Cremaschi
Article

Summary

The intracellular potential in gallbladder epithelial cells is about −59 mV with respect to both mucosal and serosal media.

It is a diffusion potential mainly due to K+; Na+ conductance seems to be very low. Entrance of Cl into cells appears to be coupled with Na+ on a neutral carrier and exit towards blood side seems to be due to a NaCl neutral pump.

Key words

Gallbladder Intracellular Potential Neutral Carrier Neutral Pump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barry, P. H., Diamond, J. M.: Junction potentials, electrode standard potentials and other problems in interpreting electric properties of membranes. J. Membr. Biol.3, 93–122 (1970)Google Scholar
  2. 2.
    Barry, P. H., Diamond, J. M., Wright, E. M.: The mechanism of cation permeation in rabbit gallbladder. Dilution potentials and biionic potentials. J. Membr. Biol.4, 358–394 (1971)Google Scholar
  3. 3.
    Cremaschi, D., Ferroni, A., Hénin, S.: Electrical potential profile across the rabbit gallbladder. Arch. Fisiol.68, 321–323 (1971). Joint Meeting of Società Italiana di Fisiologia and of the Physiological Society, Varenna (1972)Google Scholar
  4. 4.
    Cremaschi, D., Galante, M.: Action of posthypophyseal hormones on the “in vivo” isosmotic net water transport and adenylcyclase in rabbit gallbladder. Arch. intern. Physiol. Biochim.77, 819–828 (1969)Google Scholar
  5. 5.
    Cremaschi, D., Giordana, B., Lippe, C., Capraro, V.: Effect of neurohyopphyseal hormones and their mechanism of action on gallbladder water transport. Arch. intern. Physiol. Biochim.76, 813–822 (1968)Google Scholar
  6. 6.
    Cremaschi, D., Hénin, S., Calvi, M.: Transepithelial potential difference induced by Amphotericin B and NaCl−NaHCO3 pump localization in gallbladder. Arch. intern. Physiol. Biochim.79, 889–901 (1971)Google Scholar
  7. 7.
    Cremaschi, D., Hénin, S., Ferroni, A.: Intracellular electric potential in the epithelial cells of rabbit gallbladder. Bioelectrochem. Bioenergetics1, 208–216 (1974). 2nd Internat. Symp. on Bioelectrochem. Pont. à Mousson (1973)Google Scholar
  8. 8.
    Diamond, J. M.: The reabsorptive function of gallbladder. J. Physiol. (Lond.)161, 442–473 (1962)Google Scholar
  9. 9.
    Diamond, J. M.: The mechanism of solute transport by the gallbladder. J. Physiol. (Lond.)161, 474–502 (1962)Google Scholar
  10. 10.
    Diamond, J. M.: The mechanism of isotonic water transport. J. gen. Physiol.48, 15–42 (1964)Google Scholar
  11. 11.
    Diamond, J. M., Harrison, S. C.: The effect of membrane fixed charges on diffusion potentials and streaming potentials. J. Physiol. (Lond.)183, 37–57 (1966)Google Scholar
  12. 12.
    Dietschy, J. M.: Water and solute movement across the wall of everted rabbit gallbladder. Gastroenterology47, 395–408 (1964)Google Scholar
  13. 13.
    Dietschy, J. M., Moore, E. W.: Diffusion potentials and potassium distribution across the gallbladder wall. J. clin. Invest.43, 1551–1560 (1964)Google Scholar
  14. 14.
    Frederiksen, O., Leyssac, P. P.: Transcellular transport of isosmotic volumes by the rabbit gallbladder “in vitro”. J. Physiol. (Lond.)201, 201–224 (1969)Google Scholar
  15. 15.
    Frömter, E.: The route of passive ion movement through the epithelium of Necturus gallbladder. J. Membr. Biol.8, 259–301 (1972)Google Scholar
  16. 16.
    Hénin, S., Cremaschi, D., Ferroni, A.: Membrane potentials and resistance in rabbit gallbladder epithelial cells. Rend. Atti Accad. Naz. Lincei52, 563–568 (1972)Google Scholar
  17. 17.
    Machen, T. E., Diamond, J. M.: An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport. J. Membr. Biol.1, 194–213 (1969)Google Scholar
  18. 18.
    Machen, T. E., Erlij, D., Wooding, F. B. P.: Permeable junctional complexes. The movement of Lanthanum across rabbit gallbladder and interstine. J. Cell Biol.54, 302–312 (1972)Google Scholar
  19. 19.
    Nellans, H. N., Frizzel, R. A., Schultz, S. G.: Coupled sodium-chloride influx across the brusch border of rabbit ileum. Amer. J. Physiol.225, 467–475 (1973)Google Scholar
  20. 20.
    Quay, J. F., Armstrong, W.: Sodium and chloride transport by isolated bullfrog small intestine. Amer. J. Physiol.217, 694–702 (1969)Google Scholar
  21. 21.
    Rose, R. C., Gelarden, R. T., Nahrwald, D. L.: Electrical properties of isolated human gallbladder. Amer. J. Physiol.224, 1320–1326 (1973)Google Scholar
  22. 22.
    Schultz, S. G.: Electrical potential differences and electromotive forces in epithelial tissues. J. gen. Physiol.59, 794–798 (1972)Google Scholar
  23. 23.
    Smulders, A. P., Tormey, J., Wright, E. M.: The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder. J. Membr. Biol.7, 164–197 (1972)Google Scholar
  24. 24.
    Van Os, C. H., Slegers, J. F. G.: Correlation between (Na+−K+) activated ATPase activities and the rate of isosmotic fluid transport of gallbladder epithelium. Biochim. biophys. Acta (Amst.)241, 89–96 (1971)Google Scholar
  25. 25.
    Wheeler, H. O.: Transport of electrolytes and water across wall of rabbit gallbladder. Amer. J. Physiol.205, 427–438 (1963)Google Scholar
  26. 26.
    Whitlock, R. T., Wheeler, H. O.: Anion transport by isolated rabbit gallbladders. Amer. J. Physiol.213, 1199–1204 (1967)Google Scholar
  27. 27.
    Whitlock, R. T., Wheeler, H. O.: Hydrogen ion transport by isolated rabbit gallbladder. Amer. J. Physiol.217, 310–316 (1969)Google Scholar
  28. 28.
    Wright, E. M., Barry, P. H., Diamond, J. M.: The mechanism of cation permeation in rabbit gallbladder. Conductances. The current-voltage relation. The concentratin dependence of anion-cation discrimination, and the calcium competition effect. J. Membr. Biol.4, 331–357 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • S. Hénin
    • 1
  • D. Cremaschi
    • 1
  1. 1.Istituto di Fisiologia GeneraleUniversità degli Studi di MilanoItalia

Personalised recommendations