Advertisement

Pflügers Archiv

, Volume 364, Issue 3, pp 269–284 | Cite as

The bulbar respiratory centre in the rabbit

II. Responses of respiratory neurons to intermittent electrical bulbar stimulation during in-or expiration
  • M. Fallert
  • K. Baum
Article

Summary

In anesthetized rabbits, spirogram and diaphragmatic activity were examined during electrical stimulation of the bulbar lateral reticular formation. The activity of bulbar respiratory neurons was recorded contra-or ipsilaterally to the stimulation site. One volley of repetitive stimuli per breath was delivered during either inspiration or expiration.
  1. 1.

    Each volley of about 120 ms duration at 100 pulses per second, delivered early ininspiration, caused an immediate and transient inhibition of the diaphragmatic activity. An inspiratory, rebound comprising lengthening of inspiration and increase in tidal volume occurred.

    1. a)

      “Inspiratory” and “expiratory-inspiratory” phase-spanning neurons exhibited inhibition during the volley. The burst discharge was lengthened and the spike density increased after the stimulus. The same was true of some “inspiratory-expiratory” phasespanning units.

       
    2. b)

      The discharge of most of the “inspiratory-expiratory” neurons was not inhibited. “Expiratory” units were excited. In both types of cells activation occurred which outlasted the volley.

       
     
  2. 2.

    When applied duringexpiration, the volley caused a short inspiratory twitch.

    1. a)

      “Inspiratory” and “expiratory-inspiratory” neurons exhibited a short post-stimulus firing and the spike density was increased. In some units of the latter type, however, the burst discharge was shortened.

       
    2. b)

      Most of the “expiratory” and “inspiratory-expiratory” neurons were not inhibited by the volley. Cells of the former type often produced post-stimulus after-discharge; the burst discharge of units belonging to the latter type was shortened. The effects of expiratory stimuli upon neuronal activity, however, were less consistent than those elicited by inspiratory volleys.

       
     
  3. 3.

    During spontaneous irregularities of single inspirations (short interruptions), EI and I neurons exhibited comparable burst pattern changes. The changes in pattern of IE and E units were also comparable and differed distinctly from the behaviour of the EI and I cells. No major differences in behaviour were observed between neurons which were inhibited during lung inflation (α units) and those which were activated during inflation (β cells). The findings are in accord with the effects observed during electrical bulbar stimulation, suggesting that EI and I units are inspiratory-activating cells, whereas IE and E neurons may have an inspiratory-inhibitory function.

     
  4. 4.

    The conclusion is drawn that the effects of bulbar stimulation on the respiratory movements are the result of manipulation on intrinsic rhythmogenesis.

     

Key words

Bulbar stimulation Respiratory centre Respiratory neurons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Baumgarten, R.: Zur Technik der Mikroableitung am pulsierenden Gehirn. Naturwissenschaften44, 22–23 (1957)Google Scholar
  2. von Baumgarten, R., Kanzow, E.: The interaction of two types of inspiratory neurons in the region of the tractus solitarius of the cat. Arch. ital. Biol.96, 361–373 (1958)Google Scholar
  3. von Baumgarten, R., Balthasar, K., Koepchen, H. P.: Über ein Substrat atmungsrhythmischer Erregungsbildung im Rautenhirn der Katze. Pflügers Arch270, 504–528 (1960)Google Scholar
  4. Bertrand, F., Hugelin, A.: Respiratory synchronizing function of nucleus parabrachialis medialis: Pneumotaxic mechanisms. J. Neurophysiol.34, 189–207 (1971)Google Scholar
  5. Bertrand, F., Hugelin, A., Vibert, J. F.: Quantitative study of anatomical distribution of respiration related neurons in the pons. Exp. Brain Res.16, 383–399 (1973)Google Scholar
  6. Bradley, G. W., Euler, C. von, Marttila, I., Roos, B.: A model of the central and reflex inhibition of inspiration in the cat. Biol. Cybernetics19, 105–116 (1975)Google Scholar
  7. Burns, B. D.: I. Use of extracellular microelectrodes. In: Methods in medical research. pp. 354–380, Vol. 9. Chicago 1961Google Scholar
  8. Burns, D., Salmoiraghi, G. C.: Repetitive firing of respiratory neurones during their burst activity. J. Neurophysiol.23, 27–46 (1960)Google Scholar
  9. Bystrzycka, E., Gromysz, H., Huszczuk, A., Karczewski, W.: Etude chez le lapin de l'activité électrique des neurones respiratoires du tronc cérébral: I. Influence de la vagotomie et de l'injection d'histamine. Electroenceph. Clin. Neurol.29, 363–372 (1970)Google Scholar
  10. Cohen, M. I.: Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation. J. Physiol. (Lond.)217, 133–158 (1971)Google Scholar
  11. Cohen, M. I.: The genesis of respiratory rhythmicity. In: Central rhythmic and regulation, circulation, respiration, extrapyramidal motor system, pp. 15–35. Stuttgart: Hippokrates-Verlag 1974Google Scholar
  12. Cohen, M. I., Gootman, P. M.: Periodicities in efferent discharge of splanchnic nerve of the cat. Amer. J. Physiol.218, 1092–1101 (1970)Google Scholar
  13. Cohen, M. I., Wang, S. C.: Respiratory neuronal activity in pons of cat. J. Neurophysiol.22, 33–50 (1959)Google Scholar
  14. Corinth, G.: Vielseitiger Verstärker für elektrische Messungen an Nerven und Muskeln. Elektronik7, 247–265 (1974)Google Scholar
  15. Fallert, M.: Inspiratory inhibition and rebound activation caused by intermittent bulbar and afferent vagal stimulation in the rabbit. Pflügers Arch.348, 167–184 (1974)Google Scholar
  16. Fallert, M., Spillmann, Ch.: Inspiratory inhibition and rebound activation elicited by intermittent electrical bulbar stimulation in various states of pulmonary afferent vagal excitation. Pflügers Arch.357, 123–138 (1975)Google Scholar
  17. Fallert, M., Maneck, G., Wellner, U.: The bulbar respiratory centre in the rabbit. I. Changes of respiratory parameters caused by intermittent electrical bulbar stimulation during in-or expiration. Pflügers Arch.364, 257–268 (1976)Google Scholar
  18. Fernandez de Molina, A., Wyss, O. A. M.: Selektive Reizung des afferenten Lungenvagus. Helv. physiol. pharmacol. Acta8, 464–474 (1950)Google Scholar
  19. Ferrer, P., Koller, E. A.: Über die Vagusafferenzen des Meerschweinchens und ihre Bedeutung für die Spontanatmung. Helv. physiol. pharmacol. Acta26, 365–387 (1968)Google Scholar
  20. Homberger, A.-C.: Beitrag zum Nachweis von Kollapsafferenzen im Lungenvagus des Kaninchens. Helv. physiol. pharmacol. Acta26, 97–118 (1968)Google Scholar
  21. Hukuhara, T., Jr.: Neuronal organization of the central respiratory mechanisms in the brain stem of the cat. Acta neurobiol. Exp.33, 219–244 (1973)Google Scholar
  22. Hukuhara, T., Jr., Saji, Y., Kumadaki, N., Kojima, H., Tamaki, H., Takeda, R., Sakai, F.: Die Lokalisation von atemsynchron entladenden Neuronen in der retikulären Formation des Hirnstammes der Katze unter verschiedenen experimentellen Bedingungen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.263, 462–484 (1969)Google Scholar
  23. Hukuhara, T., Jr., Takeda, R.: Neuronal organization of central vasomotor mechanisms in the brain stem of cats. Advanc. Neurol. Sci.14, 75–80 (1970)Google Scholar
  24. Koepchen, H. P., Langhorst, P., Seller, H.: The problem of identification of autonomic neurons in the lower brain stem. Brain Res.87, 375–393 (1975)Google Scholar
  25. Kreuter, F., Senekowitsch, R., Richter, D. W.: Morphological description of medullary respiratory neurons of the cat. Pflügers Arch.359, R 49 (1975)Google Scholar
  26. Kumagai, H., Sakai, F., Sakuma, A., Hukuhara, T., Jr.: Relationship between activity of respiratory center and EEG. Progr. Brain Res.21 (1), 98–111 (1966)Google Scholar
  27. Lumsden, T.: Observations on the respiratory centres in the cat. J. Physiol. (Lond.)57, 153–160 (1923a)Google Scholar
  28. Lumsden, T.: Observations on the respiratory centres. J. Physiol. (Lond.)57, 354–367 (1923b)Google Scholar
  29. Merrill, E. G.: Thoracic motor drives from medullary expiratory neurones in cats. J. Physiol. (Lond.)222, 154P-155P (1972)Google Scholar
  30. Salmoiraghi, G. C., Baumgarten, R. von: Intracellular potentials from respiratory neurones in brain-stem of cat and mechanisms of rhythmic respiration. J. Neurophysiol.24, 203–218 (1961)Google Scholar
  31. Vassella, F.: Lokalisation eines inspiratorischen Zentrums in der Medulla oblongata des Kaninchens. Helv. physiol. pharmacol. Acta19, 166–182 (1961)Google Scholar
  32. Winkler, C., Potter, A.: An anatomical guide to experimental researches on the rabbit's brain. A series of 40 frontal sections. Amsterdam: Versluys 1911Google Scholar
  33. Wyss, O. A. M.: Die nervöse Steuerung der Atmung. Ergebn. Physiol.54, 1–479 (1964)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. Fallert
    • 1
  • K. Baum
    • 1
  1. 1.Physiologisches Institut der Universität MainzMainzFederal Republic of Germany

Personalised recommendations