Pflügers Archiv

, Volume 364, Issue 3, pp 257–268 | Cite as

The bulbar respiratory centre in the rabbit

I. Changes of respiratory parameters caused by intermittent electrical bulbar stimulation during inspiration or expiration
  • M. Fallert
  • G. Maneck
  • U. Wellner
Article

Summary

In anesthetized rabbits, spirogram and diaphragmatic activity were examined during electrical stimulation of regions of the medulla oblongata. The stimulating volleys were triggered by the phase transitions of the animal's own respiration.
  1. 1.

    Each earlyinspiratory volley of 120 ms duration at 100 pulses per second caused an immediate and transient inhibition of the diaphragmatic activity. Respiration was slowed down due to prolongation of inspiration. The tidal volume increased above control. Stimuli delivered after 30–40% of a control inspiration had elapsed cut short this phase and entailed a shortening of the following expiration, too. Respiration was thus accelerated.

     
  2. 2.

    Each earlyexpiratory volley caused an inspiratory twitch after a short latency. The respiratory rate was slightly increased due to shortening of expiration. The spirogram exhibited a distinct inspiratory effect (elevation of the end-inspiratory and end-expiratory levels). Stimuli delivered after 60–70% of a control expiration had elapsed slowed down respiration due to prolongation of inspiration but did not alter the end-expiratory level. The expiration remained almost unaltered. The effects were still observed while an artificial state of lung distension or collapse was maintained.

     
  3. 3.

    Volleys ofincreasing duration were delivered, starting withonset of expiration. The initial respiratory acceleration (shortening of both phases) and elevation of the end-expiratory level, observed when short volleys were applied, changed into slowing down of respiration (prolongation of both phases) and a shift of the end-expiratory level towards active expirations when the duration of the volley was somewhat longer than a normal expiration. The end-inspiratory level remained slightly elevated.

     

Results suggest that during inspiration a progressively increasing inhibitory state is built up. During expiration, both an increasing inspiratory and an expiratory tendency are present as revealed by mixed inexpiratory stimulation effects.

Key words

Bulbar stimulation Respiratory centre Respiratory phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann, F., Leibowitz, U., Korczyn, A. D.: Respiratory responses to brain stem stimulation. J. Neurol. Sci.3, 217–228 (1966)Google Scholar
  2. Boyd, T. E., Maaske, C. A.: Vagal inhibition of inspiration, and accompanying changes of respiratory rhythm. J. Neurophysiol.2, 533–542 (1939)Google Scholar
  3. Camporesi, E., Sant'Ambrogio, G.: Influences on the respiratory rhythm originating from the lungs and the chest wall. Pflügers Arch.324, 311–318 (1971)Google Scholar
  4. Clark, F. J., v. Euler, C.: On the regulation of depth and rate of breathing. J. Physiol. (Lond.)222, 267–295 (1972)Google Scholar
  5. Cohen, M. I.: Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation. J. Physiol. (Lond.)217, 133–158 (1971)Google Scholar
  6. Duffin, J., Hockman, C. H.: Limbic forebrain and midbrain modulation and phase-switching of expiratory neurons. Brain Res.39, 235–239 (1972)Google Scholar
  7. Eldridge, F. L.: The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation. J. Physiol. (Lond.)222, 297–318 (1972a)Google Scholar
  8. Eldridge, F. L.: The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation. J. Physiol. (Lond.)222, 319–333 (1972b)Google Scholar
  9. Fallert, M.: Atmungseffekte bei intermittierender elektrischer Reizung der Medulla oblongata zu verschiedenen Zeitpunkten des Atmungszyklus beim Kaninchen. Experientia (Basel)29, 1513–1515 (1973a)Google Scholar
  10. Fallert, M.: Der Hering-Breuer-Reflex bei künstlicher Beatmung des Kaninchens. VI. Die Wirkung von intermittierender, durch den Respirator gesteuerter, elektrischer Reizung der Medulla oblongata. Pflügers Arch.343, 107–122 (1973b)Google Scholar
  11. Fallert, M.: Inspiratory inhibition and rebound activation caused by intermittent bulbar and afferent vagal stimulation in the rabbit. Pflügers Arch.348, 167–184 (1974)Google Scholar
  12. Fallert, M., Baum, K.: The bulbar respiratory centre in the rabbit. II. Responses of respiratory neurons to intermittent electrical bulbar stimulation during in- or expiration. Pflügers Arch.364, 269–284 (1976)Google Scholar
  13. Fallert, M., Corinth, G.: A device to trigger automatically electrical stimulation at different states of in- or expiration on the background of variable lung inflation in the rabbit. Pflügers Arch.357, 139–143 (1975)Google Scholar
  14. Karczewski, W.: Udzial nerwu blednego w regulacji oddychania. Postepy Hig. Med. dós.19, 507–569 (1965)Google Scholar
  15. Knox, C. K.: Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol.36, 284–295 (1973)Google Scholar
  16. Korczyn, A., Bergmann, F., Leibowitz, U.: Effect of brain-stem transections on respiratory responses to electrical stimulation of the medulla oblongata. Electroenceph. Clin. Neurophysiol.22, 590 (1967)Google Scholar
  17. Larrabee, M. G., Hodes, R.: Cyclic changes in the respiratory centers, revealed by the effects of afferent impulses. Amer. J. Physiol.155, 147–164 (1948)Google Scholar
  18. Lüscher, H.-R.: Ein Beitrag zur Selbststeuerung der Atmung. Inaugural-Dissertation, Zürich, 1–25, 1975Google Scholar
  19. Magoun, H. W., Beaton, L. E.: Respiratory responses from stimulation of the medulla of the cat. Amer. J. Physiol.134, 186–191 (1941)Google Scholar
  20. Pitts, R. F.: The differentiation of respiratory centers. Amer. J. Physiol.134, 192–201 (1941)Google Scholar
  21. Rijlant, P.: Le contrôle réflexe des neurones inspirateurs par les sensibilités vagale et sino-carotidienne. C. R. Soc. Biol. (Paris)135, 404–409 (1941)Google Scholar
  22. Rijlant, P.: Contribution à l'étude du contrôle réflexe de la respiration. Bull. Acad. roy. Méd. Belg., Sér. VI,7, 58–107 (1942)Google Scholar
  23. Rijlant, P.: Contribution à l'étude des variations du contrôle réflexe de l'activité respiratoire par les fibres sensibles du nerf vague. Arch. intern. Pharmacodyn.69, 45–113, (1943)Google Scholar
  24. Trouth, C. O., Loeschcke, H. H., Berndt, J.: Topography of the respiratory responses to electrical stimulation in the medulla oblongata. Pflügers Arch.339, 153–170 (1973)Google Scholar
  25. Wyss, O. A. M.: L'interprétation du pneumogramme concernant les modifications du type respiratoire. Helv. Physiol. Pharmacol. Acta1, 301–324 (1943)Google Scholar
  26. Wyss, O. A. M.: Die nervöse Steuerung der Atmung. Ergebn. Physiol.54, 1–479 (1964)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. Fallert
    • 1
  • G. Maneck
    • 1
  • U. Wellner
    • 1
  1. 1.Physiologisches Institut der Universität MainzMainzFederal Republic of Germany

Personalised recommendations