Pflügers Archiv

, Volume 370, Issue 2, pp 201–209 | Cite as

Local oxygen tension and spike activity of the cerebral grey matter of the rat and its response to short intervals of O2 deficiency or CO2 excess

  • Hermann Metzger
  • Sabine Heuber


Local\(P_{ O_2 }\) differences within the rat brain cortex were analyzed with an O2 microsensor slowly advanced from the brain surface into the deep cortical structures. The\(P_{ O_2 }\) tended to decrease from the pia (40 mm Hg) to the deep cortex (4 mm Hg). The mean tissue\(P_{ O_2 }\) of the occipital cortex of 21 rats (5229 measuring points) was found to be 14 mm Hg; great local variations indicate a very inhomogeneous capillary-tissue system.

\(P_{ O_2 }\) time variations and extracellular action potentials registered from the same brain portion were investigated applying short pulses of inspiratory N2 and CO2. During pronounced hypoxia and hypercapnia the number of spikes per second deceased rapidly, whereas an increased spike activity was observed during slight hypercapnia. For the posthypoxic and posthypercapnic periods, the time course of the local\(P_{ O_2 }\), may be mathematically described by means of a second-order delay term with a proportional differential component. A comparison of these results shows that the response after hypercapnia is much faster than after hypoxia. The fact that cortical cells show the same reactions to hypoxia and hypercapnia as spinal cells, argues against a specific O2 receptor in the brain itself.

Key words

Local\(P_{ O_2 }\) in the rat brain cortex Local\(P_{ O_2 }\) and APs Transient hypoxia and hypercapnia \(P_{ O_2 }\) regulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bicher, H. I.: Brain oxygen autoregulation: A protective reflex to hypoxia? Microvasc. Res.8, 291–313 (1974)Google Scholar
  2. 2.
    Bicher, H. I., Bruley, D. F., Knisely, M. H., Reneau, D. D.: Effect of microcirculation changes on brain tissue oxygenation. J. Physiol. (Lond.)217, 689–707 (1971)Google Scholar
  3. 3.
    Bruley, D. F., Hunt, D. H.: Theoretical studies of brain autoregulation: Oxygen transport to tissue. Microvasc. Res.8, 314–319 (1974)Google Scholar
  4. 4.
    Creutzfeldt, O., Kasamatsu, A., Vaz-Ferreira, A.: Aktivitätsänderungen einzelner corticaler Neurone im akuten Sauerstoffmangel und ihre Beziehungen zum EEG bei Katzen. Pflügers Arch. ges. Physiol.263, 647–667 (1957)Google Scholar
  5. 5.
    Eccles, R. M., Loyning, Y., Oshima, T.: Effects of hypoxia on the monosynaptic reflex pathway in the spinal cord. J. Neurophysiol.29, 315–332 (1965)Google Scholar
  6. 6.
    Fieschi, L. C., Jr., Bozao, L., Agnoli, A.: Regional hydrogen clearance as a measure of cerebral blood flow. Acta Neurol. Scand., Suppl. XIV, 46–52 (1965)Google Scholar
  7. 7.
    Gleichmann, U., Ingvar, D. H., Lübbers, D. W., Siesjö, B. K., Thews, G.: Tissue\(P_{ O_2 }\) and\(P_{CO_2 }\) of the cerebral cortex, related to blood gas tensions. Acta Physiol. Scand.55, 127–138 (1962)Google Scholar
  8. 8.
    Glötzner, F.: Intracelluläre Potentiale, EEG und corticale Gleichspannung an der sensomotorischen Rinde der Katze bei akuter Hypoxie. Arch. Psychiatr. Nervenkr.210, 274–296 (1967)Google Scholar
  9. 9.
    Kolmodin, G. M., Skoglund, D. R.: Influence of asphyxia on membrane potential level and action potentials of spinal moto- and interneurons. Acta Physiol. Scand.45, 1–18 (1959)Google Scholar
  10. 10.
    Krnjević, K., Randić, M., Siesjö, B. K.: Cortical CO2 tension and neuronal excitability. J. Physiol. (Lond.)176, 105–122 (1965)Google Scholar
  11. 11.
    Kunke, S., Erdmann, W., Metzger, H.: A new method for simultaneous\(P_{ O_2 }\) and action potential measurements in microareas of tissue. J. Appl. Physiol.32, 436–438 (1972)Google Scholar
  12. 12.
    Leniger-Follert, E., Lübbers, D. W., Wrabetz, W.: Regulation of local tissue\(P_{ O_2 }\) of the brain cortex at different arterial O2 pressures. Pflügers Arch.359, 81–95 (1975)Google Scholar
  13. 13.
    Lierse, W.: Die Kapillardichte im Rhinencephalon verschiedener Wirbeltiere und des Menschen. In: Progress in brain research, Vol. 3: The Rhinencephalon and related structures (W. Bargmann and J. P. Schadé, eds.), pp. 230–236. Amsterdam-London-New York: Elsevier 1963Google Scholar
  14. 14.
    Lierse, W.: Die Kapillardichte im Wirbeltiergehirn. Acta Anat. (Basel)54, 1–31 (1963)Google Scholar
  15. 15.
    Lübbers, D. W.: Regional cerebral blood flow and microcirculation. In: Blood flow through organs and tissues (W. H. Bain and A. M. Harper, eds.), pp. 162–164. Edinburgh-London: E. & S. Livingstone LTD 1968Google Scholar
  16. 16.
    Lübbers, D. W.: The oxygen pressure field of the brain and its significance for the normal and critical oxygen supply of the brain. In: Oxygen transport in blood and tissue (D. W. Lübbers, U. C. Luft, G. Thews, and E. Witzleb, eds.), pp. 124–139. Stuttgart: Thieme 1968Google Scholar
  17. 17.
    Lübbers, D. W., Ingvar, D. H., Betz, E., Fabel, H., Kessler, M., Schmahl, F. W.: Sauerstoffverbrauch der Großhirnrinde in Schlaf- und Wachzustand beim Hund. Pflügers Arch. ges. Physiol.218, R58 (1964)Google Scholar
  18. 18.
    Metzger, H.: Verteilung des O2-Partialdruckes im Mikrobereich des Gehirngewebes. Polarographische Messung und mathematische Analyse. Habil.-Schrift, Mainz 1971Google Scholar
  19. 19.
    Metzger, H.: Polarographic oxygen tension measurements in microstructures of the living tissue. A digital computer study on the oxygen tension histogram. Adv. Chem. Ser.118, 328–342 (1973)Google Scholar
  20. 20.
    Metzger, H.: Reoxygenation and action potential recovery time of cerebral cortex in response to transient hypoxia and anoxia. In: Oxygen supply (M. Kessler, D. F. Bruley, L. C. Clark, Jr., D. W. Lübbers, I. A. Silver, and J. Strauss, eds.), pp. 164–168. München-Berlin-Wien: Urban & Schwarzenberg 1973Google Scholar
  21. 21.
    Metzger, H.: The influence of space-distributed parameters on the calculation of substrate and gas exchange in microvascular units. Math. Biosci.30, 31–46 (1976)Google Scholar
  22. 22.
    Metzger, H.: Time and space dependence of local\(P_{ O_2 }\) in brain tissue. Int. Congr. Ser., Amsterdam: Excerpta Medica (in press, 1977)Google Scholar
  23. 23.
    Metzger, H., Erdmann, W., Thews, G.: Effect of short periods of hypoxia, hyperoxia and hypercapnia on brain O2 supply. J. Appl. Physiol.31, 751–759 (1971)Google Scholar
  24. 24.
    Meyer-Waarden, K., Lange, D., May, H. U.: Halbautomatische elektronische Steuerung eines Mikroelektroden-Vortriebes. Biomed. Tech. (Stuttg.)20, 71–75 (1975)Google Scholar
  25. 25.
    Niechay, A., Van Harreveld, A.: Intracellular recording from cats spinal interneurons during acute asphyxiation. Brain Res.8, 54–64 (1968)Google Scholar
  26. 26.
    Nair, P., Whalen, W. J., Buerk, D.:\(P_{ O_2 }\) of cerebral cortex: Response to breathing N2 and 100% O2. Microvasc. Res.9, 158–165 (1975)Google Scholar
  27. 27.
    Opitz, E., Schneider, M.: Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Ergeb. Physiol.46, 126–260 (1950)Google Scholar
  28. 28.
    Papajewski, W., Klee, M. R., Wagner, A.: Die Wirkung erhöhter CO2 Drucke auf die Erregbarkeit spinaler Motoneurone. Electroencephalogr. Clin. Neurophysiol.27, 618 (1969)Google Scholar
  29. 29.
    Pfeifer, R. A.: Die Angioarchitektonik der Großhirnrinde. Berlin: Springer 1928Google Scholar
  30. 30.
    Reneau, D. D., Bruley, D. F., Knisely, M. H.: A digital simulation of transient oxygen transport in capillary-tissue system (cerebral grey matter). AIChE. J.15, 916–925 (1969)Google Scholar
  31. 31.
    Silver, I. A.: Some observations on the cerebral cortex with an ultramicro, membrane-covered oxygen electrode. Med. Biol. Eng.3, 377–387 (1965)Google Scholar
  32. 32.
    Silver, I. A.: Brain oxygen tension and cellular activity. In: Oxygen supply (M. Kessler, D. F. Bruley, L. C. Clark, Jr., D. W. Lübbers, I. A. Silver, and J. Strauss, eds.), pp. 186–188. München-Berlin-Wien: Urban & Schwarzenberg 1973Google Scholar
  33. 33.
    Speckmann, E. J., Caspers, H.: Verschiebungen des corticalen Bestandpotentials bei Veränderungen der Ventilationsgröße. Pflügers Arch.310, 235–250 (1969)Google Scholar
  34. 34.
    Speckmann, E. J., Caspers, H., Sokolov, W.: Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch.319, 122–138 (1970)Google Scholar
  35. 35.
    Thews, G.: Die Sauerstoffdiffusion im Gehirn. Pflügers Arch. ges. Physiol.217, 197–226 (1960)Google Scholar
  36. 36.
    Zeman, W., Innes, J. R. M.: Craigie's Neuroanatomy of the Rat. New York-London: Academic Press 1963Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Hermann Metzger
    • 1
  • Sabine Heuber
    • 1
  1. 1.Physiologisches InstitutMedizinische Hochschule HannoverHannover 61Federal Republic of Germany

Personalised recommendations