Advertisement

Pflügers Archiv

, Volume 367, Issue 3, pp 291–294 | Cite as

Influences of local and global temperature stimuli on the Lewis-reaction

  • J. Werner
Article

Summary

Oscillatory changes of temperatures of the human fingers in cold air (Lewis-reaction) are investigated under central and local influences. After heat load of the body, the Lewis-reaction is suppressed, no matter which environmental temperature of the hand is chosen. Decrease of finger temperature during the oscillatory behaviour takes about twice as much time as increase. A dependence of the time course on the chosen environmental temperature is not evident. Mean level of temperature oscillation rises with increased environmental temperatures of body and hand, whereas the amplitude of oscillation increases with growing environmental temperature of the body, but decreases with growing environmental temperature of the hand. After cold load of the body the Lewis-reaction is suppressed in some individuals. Interpretation of the Lewis-reaction and interaction of global and local requirements are discussed.

Key words

Temperature regulation Blood flow Lewis-reaction Cold Man 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aschoff, J.: Über die Kältedilatation der Extremität des Menschen in Eiswasser. Pflügers Arch. ges. Physiol.248, 183–196 (1944)Google Scholar
  2. 2.
    Brown, M. G., Page, J.: The effect of chronic exposure to cold on temperature and blood flow of the hand. J. appl. Physiol.5, 221–227 (1952)bGoogle Scholar
  3. 3.
    Folkow, B., Fox, R. H., Krog, J., Odelram, H., Thorén, O.: Studies on the reactions of the cutaneous vessels to cold exposure. Acta physiol. scand.58, 342–354 (1963)Google Scholar
  4. 4.
    Glaser, E. M., Griffin, J. P.: Influence of the cerebral cortex on habituation. J. Physiol. (Lond.)160, 429–445 (1962)Google Scholar
  5. 5.
    Glaser, E. M., Whittow, G. C.: Retention in a warm environment of adaptation to localized cooling. J. Physiol. (Lond.)136, 98–111 (1957)Google Scholar
  6. 6.
    Greenfield, A. D. M., Shepherd, J. T.: A quantitative study of the response to cold of the circulation through the fingers of normal subjects. Clin. Sci.9, 323–347 (1950)Google Scholar
  7. 7.
    Keatinge, W. R.: The effect of general chilling on the vasodilator response to cold. J. Physiol. (Lond.)139, 497–507 (1957)Google Scholar
  8. 8.
    Keatinge, W. R.: The effect of low temperatures on the responses of arteries to constrictor drugs. J. Physiol. (Lond.)142, 395–405 (1958)Google Scholar
  9. 9.
    Keatinge, W. R.: Mechanism of adrenergic stimulation of mammalian arteries and its failure at low temperatures. J. Physiol. (Lond.)174, 184–205 (1964)Google Scholar
  10. 10.
    Keatinge, W. R.: Direct effects of temperature on blood vessels: their role in cold vasodilatation. In: Physiological and behavioral temperature regulation (J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk, eds.). Springfield, Ill.: Ch. C. Thomas 1970Google Scholar
  11. 11.
    Kramer, K., Schulze, W.: Die Kältedilatation der Hautgefäße. Pflügers Arch. ges. Physiol.25, 141–170 (1948)Google Scholar
  12. 12.
    Kresse, H., Schmidt, F., Geiger, S.: Neuartige postoperative Kältetherapie. Biomed. Techn.20, 59–62 (1975)Google Scholar
  13. 13.
    Lewis, T., Haynal, J., Kerr, W., Stern, E., Landis, E. M.: Observation upon the reaction of the vessels of the human skin to cold. Heart15, 177–208 (1930)Google Scholar
  14. 14.
    Molnar, G. W.: Analysis of the rate of digital cooling. J. Physiol. (Paris)63, 350–352 (1971)Google Scholar
  15. 15.
    Sams, W. M., Winkelmann, R. K.: Temperature effects on isolated resistance vessels of skin and mesentery. Amer. J. Physiol.216, 112–116 (1969)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Werner
    • 1
  1. 1.Institut für Physiologie, Arbeitsgruppe ElektrophysiologieRuhr-Universität BochumBochum-QuerenburgFederal Republic of Germany

Personalised recommendations