Pflügers Archiv

, Volume 367, Issue 3, pp 221–227 | Cite as

Amino acid reabsorption in the proximal tubule of rat kidney: Stereospecificity and passive diffusion studied by continuous microperfusion

  • S. Silbernagl
  • H. Völkl
  • G. Vetter


Renal tubular reabsorption of glycine and of thel- andd-isomers of histidine, serine, phenylalamine, methionine, proline and cystine was investigated in vivo et situ by continuous microperfusion of single proximal convolutions of the rat kidney. In the case of glycine and thel-isomers, tubular reabsorption is saturable to a great extent. Thed-amino acids are reabsorbed much more slowly than the respectivel-forms. Furthermore in the case of methionine and perhaps also of proline, serine and phenylalanine, the fractional reabsorption decreases in the presence of high concentrations of thel-form. This indicates that thed-isomers also have a measurable affinity for the reabsorption mechanisms of the renal tubule.

The very poor reabsorption ofd-amino acids in the presence of theirl-isomers indicates that simple passive diffusion plays only a relatively small role in tubular amino acid reabsorption. Permeability coefficients estimated from these findings are in the range from 1–5×10−7 cm2·s−1. These values are very similar to those found for other organic molecules of comparable molecular weights.

Key words

Amino acid transport Renal tubule Stereospecificity Passive diffusion Saturation kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    v. Baeyer, H., v. Conta, Ch., Häberle, D., Deetjen, P.: Determination of transport constants for glucose in proximal tubules of the rat kidney. Pflügers Arch.343, 273–286 (1973)Google Scholar
  2. 2.
    Baldamus, C. A., Radtke, H. W., Rumrich, G., Sauer, F., Ullrich, K. J.: Reflection coefficient and permeability of urea in the proximal convulution of the rat kidney. J. Membrane Biol.7, 377–390 (1972)Google Scholar
  3. 3.
    Bergeron, M.: Discussion remark. In: Amino acid transport and uric acid transport (S. Silbernagl, F. Lang and R. Greger, eds.), p. 45: Stuttgart: Thieme 1976Google Scholar
  4. 4.
    Bergeron, M., Dubord, L., Hausser, C.: Membrane permeability as a cause of transport defects in experimental Fanconi syndrom. J. clin. Invest.57, 1181–1189 (1976)Google Scholar
  5. 5.
    Bergeron, M., Morel, F.: Amino acid transport in rat renal tubules. Amer. J. Physiol.216, 1139 (1969)Google Scholar
  6. 6.
    Berglund, F., Lotspeich, W. D.: Effect of various amino acids on the renal tubular reabsorption of inorganic sulfate in the dog. Amer. J. Physiol.185, 539 (1956)Google Scholar
  7. 7.
    Brodehl, J., Gelissen, K., Kaas, W. P.: The renal transport of amino acids in untreated infants with phenylketonuria. Acta paediat. scand.59, 241–248 (1970)Google Scholar
  8. 8.
    Capec, K., Fuchs, G., Rumrich, G., Ullrich, K. J.: Harnstoffpermeabilität der corticalen Tubulusabschnitte von Ratten in Antidiurese und Wasserdiurese. Pflügers Arch. ges. Physiol.290, 237–249 (1966)Google Scholar
  9. 9.
    Chan, Y. L., Huang, K. C.: Microperfusion studies on renal tubular transport of tryptophan derivatives in rats. Amer. J. Physiol.221, 575–579 (1971)Google Scholar
  10. 10.
    Crampton, R. F., Smyth, D. H.: The excretion of the enantiomorphs of amino acids. J. Physiol. (Lond.)122, 1–10 (1953).Google Scholar
  11. 11.
    Dantzler, W. H., Silbernagl, S.: Renal tubular reabsorption of taurine, γ-aminobutyric acid (GABA) and β-alamine studied by continuous microperfusion. Pflügers Arch.367, 123–128 (1976)Google Scholar
  12. 12.
    Deetjen, P., Silbernagl, S.: Some new developments in continuous microperfusion technique. Yale J. Biol. Med.45, 301–306 (1972)Google Scholar
  13. 13.
    Ferguson, F. P., Eaton, A. G., Ashman, J. S.: Renal reabsorption of methionine in normal dogs. Proc. Soc. exp. Biol. (N.Y.)66, 582 (1947)Google Scholar
  14. 14.
    Freedman, B. S., Young, J. A.: Microperfusion study ofl-histidine transport by the rat nephron. Austr. J. exp. Biol. med. Sci.47, 10 (1969)Google Scholar
  15. 15.
    Gerok, W., Gayer, J.: Die tubuläre Rückresorption derl-Aminosäuren in der Niere des Hundes. Klin. Wschr.39, 540–546 (1961)Google Scholar
  16. 16.
    Gibson, Q. H., Wiseman, G.: Selective absorption of stereoisomers of amino acids from loops of the small intestine of the rat. Biochem. J.48, 426–429 (1951)Google Scholar
  17. 17.
    Gilissen, J., Taugner, R.: Die Nierenausscheidung von Ascorbinsäure, Glykokoll und Alanin bei der Katze. Z. ges. exp. Med.134, 179–186 (1961)Google Scholar
  18. 18.
    Good, N. E., Winget, G. D., Winter, W., Conolly, T. N., Izawa, S., Singh, R. M.: Hydrogen ion buffer for biological research. Biochemistry5, 467–477 (1966)Google Scholar
  19. 19.
    Györy, A. Z., Kinne, R.: Energy source for transepithelial sodium transport in rat renal proximal tubules. Pflügers Arch.327, 234–269 (1971)Google Scholar
  20. 20.
    Jervis, E., Smyth, D. H.: The active transfer ofd-methionine by the rat intestine in vitro. J. Physiol. (Lond.)151, 51–58 (1960)Google Scholar
  21. 21.
    Kashgarian, M., Stöckle, H., Gottschalk, C. W., Ullrich, K. J.: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (Diabetes insipidus) Pflügers Arch. ges. Physiol.277, 89–106 (1963)Google Scholar
  22. 22.
    Lingard, J. M., Györy, A. Z., Young, J. A.: Microperfusion study of the kinetics of reabsorption of cycloleucine in early and late segments of the proximal convolution of the rat nephron. Pflügers Arch.357, 51–61 (1975)Google Scholar
  23. 23.
    Lingard, J. M., Rumrich, G., Young, J. A.: Reabsorption ofl-glutamine andl-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: Evidence that the proximal convolution is not homogeneous. Pflügers Arch.342, 1–12 (1973)Google Scholar
  24. 24.
    Lingard, J. M., Rumrich, G., Young, J. A.: Kinetics ofl-histidine transport in the proximal convolution of the rat nephron studied using the stationary microperfusion technique. Pflügers Arch.342, 13–28 (1973)Google Scholar
  25. 25.
    Lingard, J. M., Turner, B., Williams, D. B., Young, J. A.: Endogenous amino acid clearance by the rat kidney. Aust. J. exp. Biol. med. Sci.52 687–695 (1974)Google Scholar
  26. 26.
    Loeschke, K., Baumann, K., Renschler, H., Ullrich, K. J.: Differenzierung zwischen aktiver und passiver Komponente desd-Glukosetransportes am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118–138 (1969)Google Scholar
  27. 27.
    Sachs, L.: Statistische Auswertungsmethoden. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  28. 28.
    Silbernagl, S.: Die tubuläre Resorption einiger Transport-Hemmstoffe und deren Wirkung auf den Aminosäuren-Transfer in der Rattenniere. Nieren- u. Hochdruck-Krankh.3, XVII (1974)Google Scholar
  29. 29.
    Silbernagl, S.: Aminosäuren-Transport in der Niere: Ergebnisse der Mikroperfusion. Biologie in unserer Zeit4, 161–168 (1974)Google Scholar
  30. 30.
    Silbernagl, S.: The tubular permeability of some transport inhibitors and their effect on amino acid reabsorption in the rat kidney. Proceedings of the International Union of Physiological Sciences, Vol. XI:XXVI. International Congress, New Delhi 1974, p. 113Google Scholar
  31. 31.
    Silbernagl, S.: Cycloleucine (1-amino-cyclopentane carboxylic acid): Tubular reabsorption and inhibitory effect on amino acid transport in the rat kidney (microperfusion experiments). Pflügers Arch.353, 241–253 (1975)Google Scholar
  32. 32.
    Silbernagl, S.: Renal tubular reabsorption of amino acids: Specificity of the different transport systems studied by continuous microperfusion. In: Amino acid transport and uric acid transport (S. Silbernagl, F. Lang, and R. Greger, eds.), p. 78. Stuttgart: Thieme 1976Google Scholar
  33. 33.
    Silbernagl, S.: Tubular reabsorption of neutral amino acids in rat kidney. Comparison ofl-andd-isomers. Pflügers Arch.362, R10 (1976)Google Scholar
  34. 34.
    Silbernagl, S., Deetjen, P.: Glycine reabsorption in rat proximal tubules. Microperfusion studies. Pflügers Arch.323, 342–350 (1971)Google Scholar
  35. 35.
    Silbernagl, S., Deetjen, P.:l-Arginine transport in rat proximal tubules. Microperfusion studies on reabsorption kinetics. Pflügers Arch.336, 79–86 (1972)Google Scholar
  36. 36.
    Silbernagl, S., Deetjen, P.: The tubular reabsorption ofl-cystine andl-cysteine. A common transport system withl-arginine or not? Pflügers Arch.337, 277–284 (1972)Google Scholar
  37. 37.
    Silbernagl, S., Deetjen, P.: Molecular specificity of thel-arginine reabsorption mechanism. Microperfusion studies in the proximal tubule of rat kidney. Pflügers Arch.340, 325–334 (1973)Google Scholar
  38. 38.
    Silbernagl, S., Foulkes, E. C., Deetjen, P.: Renal transport of amino acids. Rev. Physiol. Biochem. Pharmacol.74, 105–167 (1975)Google Scholar
  39. 39.
    Silbernagl, S., Pfaller, W., Deetjen, P.: Molecular specificity of tubular amino acid reabsorption. In: Renal metabolism in relation to renal function (U. Schmidt and U. C. Dubach, eds.). Bern: Huber 1976Google Scholar
  40. 40.
    Sonnenberg, H., Deetjen, P.: Methode zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch. ges. Physiol.278, 669–674 (1964)Google Scholar
  41. 41.
    Sonnenberg, H., Oelert, H., Baumann, K.: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol.171, 180 (1965)Google Scholar
  42. 42.
    Ullrich, K. J.: Permeability characteristics of the mammalian nephron. In: Handbook of physiology, Section 8: Renal physiology (J. Orloff and R. W. Berliner, eds.). Washington, D.C.: American Physiological Society 1973Google Scholar
  43. 43.
    Ullrich, K. J., Frömter, E., Samarzija, I., Evers, J., Kinne, R.: Sodium dependence of amino acid transport in the proximal convolution of the rat kidney. In: Amino acid transport and uric acid transport (S. Silbernagl, F. Lang, and R. Greger, eds.), p. 70. Stuttgart: Thieme 1976Google Scholar
  44. 44.
    Völkl, H., Silbernagl, S.:l-Proline reabsorption in rat kidney tubules. Microperfusion experiments. Pflügers Arch.359, R120 (1975)Google Scholar
  45. 45.
    Völkl, H., Silbernagl, S.: Handling of proline in the rat kidney. Inhibitory effect of other imino acids, ofl-phenylalamine, and of glycine. Pflügers Arch.362, R11 (1976)Google Scholar
  46. 46.
    Young, J. A., Freedman, B. S.: Renal tubular transport of amino acids. Clin. Chem.17, 245–266 (1971)Google Scholar
  47. 47.
    Young, J. A., Lingard, J. M.: Handling of neutral amino acids by the proximal tubule of the rat nephron. In: Amino acid transport and uric acid transport (S. Silbernagl, F. Lang, and R. Greger, eds.), p. 86. Stuttgart: Thieme 1976Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • S. Silbernagl
    • 1
  • H. Völkl
    • 1
  • G. Vetter
    • 1
  1. 1.Institut für PhysiologieUniversität InnsbruckInnsbruckAustria

Personalised recommendations