Skip to main content
Log in

Ventilation estimated from efferent phrenic nerve activity in the paralysed cat

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The purpose of this study is to develop a reliable method for obtaining information about “spontaneous respiration” in paralysed cats. Therefore action potentials from one of the phrenic nerves are recorded. In a spontaneously breathing animal, a CO2 rebreathing experiment is performed in order to obtain a relationship between phrenic nerve activity and tidal volume. This phrenic nerve activity is corrected for the noise measured during expiration and quantified proportional to the square root of the mean impulse rate of the whole nerve bundle. Thus, high correlation coefficients (0.95 or more) between phrenic nerve activity and tidal volume can be obtained.

After paralysing the cat this relationship can be used to estimate “spontaneous tidal volume” from the phrenic nerve activity. It appears to be necessary to perform unilateral phrenicotomy on the nerve from which recordings are taken, because there is a considerable amount of afferent signals in the phrenic nerve which is dependent on the stroke volume of the respirator, on the alveolarP CO2and somewhat on the alveolarP O2.

It is concluded that after vagotomy and phrenicotomy and if suitably quantified, the electrical activity in the phrenic nerve gives accurate information on “spontaneous ventilation” in a paralysed cat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cherniack, N. S., Stanley, N. N., Tuteur, P. G., Altose, M. D., Fishman, A. P.: Effects of lung volume changes on respiratory drive during hypoxia and hypercapnia. J. appl. Physiol.35, 635–641 (1973)

    Google Scholar 

  • Clark, F. J., von Euler, C.: On the regulation of depth and rate of breathing. J. Physiol. (Lond.)222, 267–295 (1972)

    Google Scholar 

  • Corda, M., von Euler, C., Lennerstrand, G.: Proprioceptive innervation of the diaphragm. J. Physiol. (Lond.)178, 161–177 (1965)

    Google Scholar 

  • Dick, D. E., Meyer, J. R., Weil, J. V.: A new approach to quantitation of whole nerve bundle activity. J. appl. Physiol.36, 393–397 (1974)

    Google Scholar 

  • Duron, B., Caillol, M. C.: Investigation of afferent activity in the intact phrenic nerve with bipolar electrodes. Acta neurobiol. exp33, 427–432 (1973)

    Google Scholar 

  • Eldridge, F. L.: Relationship between phrenic nerve activity and ventilation. Amer. J. Physiol.221, 535–543 (1971)

    Google Scholar 

  • Fitzgerald, R. S.: Relationship between tidal volume and phrenic nerve activity during hypercapnia and hypoxia. Acta neurobiol. exp.33, 419–425 (1973)

    Google Scholar 

  • Folgering, H. Th., Bernards, J. A., Sistermans, J. F., Michels, B.: Automatic stabilisation of inspiratory oxygen pressure and endexpiratory carbon dioxide pressure in a closed spirometer system. Pflügers Arch.347, 351–357 (1974)

    Google Scholar 

  • Gesell, R., Kearny Atkinson, A., Brown, R. C.: The gradation of the intensity of inspiratory contractions. Amer. J. Physiol.113, 659–673 (1940)

    Google Scholar 

  • Gill, P. K.: The effects of end-tidal CO2 on the discharge of individual phrenic motoneurones. J. Physiol. (Lond.)168, 239–257 (1963)

    Google Scholar 

  • Glebovskii, V. D.: Stretch receptors in the diaphragm. Fed. Proc.22, 405–410 (1963)

    Google Scholar 

  • Katz, R. L., Fink, B. R., Ngai, S. H.: Relationship between electrical activity of the diaphragm and ventilation. Proc. Soc. exp. Biol. (N.Y.)110, 792–794 (1962)

    Google Scholar 

  • Kindermann, W., Pleschka, K.: Phrenic nerve response to passive muscle stretch at different arterial CO2 tensions. Respir. Physiol.17, 227–237 (1973)

    Google Scholar 

  • Lourenço, R. V., Cherniak, N. S., Malm, J. R., Fishman, A. P.: Nervous output from the respiratory center during obstructed breathing. J. appl. Physiol.21, 527–533 (1966)

    Google Scholar 

  • Lourenço, R. V., Miranda, J. M.: Drive and performance of the ventilatory apparatus in chronic obstructive lung disease. New Engl. J. Med.279, 53–59 (1968)

    Google Scholar 

  • Lourenço, R. V., Mueller, E. P.: Quantification of the electrical activity in the human diaphragm. J. appl. Physiol.22, 598–600 (1967)

    Google Scholar 

  • Mognoni, P., Saibene, F., Sant Ambrogio, G.: Contribution of the diaphragm and the other inspiratory muscles to different levels of tidal volume and static inspiratory effort in the rabbit. J. Physiol. (Lond.)202, 517–534 (1969)

    Google Scholar 

  • Pitts, R. F.: Exictation and inhibition of phrenic motoneurones. J. Neurophysiol.5, 75–88 (1942)

    Google Scholar 

  • Woldring, S.: Interrelation between lung volume, arterial CO2 tension and respiratory activity. J. appl. Physiol.20, 647–652 (1965)

    Google Scholar 

  • Yasargil, G. M.: Proprioceptive Afferenzen im N. phrenicus der Katze. Helv. physiol. pharmacol. Acta20, 39–58 (1962)

    Google Scholar 

  • Yasargil, G. M., Koller, E. A.: Über die motorische Innervation des Zwerchfells beim Kaninchen. Helv. physiol. pharmacol. Acta22, 137–147 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolders, F.D.J., Folgering, H.T. & Bernards, J.A. Ventilation estimated from efferent phrenic nerve activity in the paralysed cat. Pflugers Arch. 359, 157–169 (1975). https://doi.org/10.1007/BF00581285

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581285

Key words

Navigation