Pflügers Archiv

, Volume 373, Issue 1, pp 59–68 | Cite as

Anterior and posterior hypothalamus: Effects of independent temperature displacements on heat production in conscious goats

  • Stefan Puschmann
  • Claus Jessen
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology


Three goats were chronically implanted with thermodes to alter the temperatures of the anterior and posterior hypothalamus independently of each other. At an air temperature of +14°C the anterior hypothalamus was cooled with different intensities, while the posterior hypothalamus was simultaneously either warmed (39°C) or cooled (29°C). In both conditions cooling anterior hypothalamus increased heat production. However, the increase was smaller, when the posterior hypothalamus was cooled. The inhibiting effect was most pronounced during the first parts of the periods and diminished with time. Nevertheless, in a separate series of experiments, the effects of posterior hypothalamic cooling were found to persist over periods of 3 h. At an air temperature of +3°C the posterior hypothalamus temperature was altered between 28 and 42°C, while anterior hypothalamus temperature was kept close to its control level. Shivering and heat production decreased with cooling and increased with warming of the posterior hypothalamus. The results suggest that those neurons which reside in the posterior hypothalamus and mediate shivering, are sensitive to temperature. Thermosensitivity of these allegedly integrative neurons affects shivering and heat production in a way inverse to the thermosensitivity of the temperature sensing neurons in the anterior hypothalamus.

Key words

Temperature regulation Anterior hypothalamic thermosensitivity Posterior hypothalamic thermosensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, E.: Hypothalamic control of thermoregulatory behavior. In: Recent studies of hypothalamic function (K. Lederis, K. E. Cooper, eds.), pp. 341–358. Basel: Karger 1974Google Scholar
  2. Bard, Ph., Woods, J. W., Bleier, R.: The effects of cooling, heating and pyrogen on chronically decerebrate cats. In: Physiological and behavioral temperature regulation (J. D. Hardy, A. Ph. Gagge, J. A. J. Stolwijk, eds.), pp. 519–548. Springfield: Ch. Thomas 1970Google Scholar
  3. Birzis, L., Hemingway, A.: Descending brain stem connections controlling shivering in cat. J. Neurophysiol.19, 37–43 (1956)Google Scholar
  4. Birzis, L., Hemingway A.: Efferent brain discharge during shivering. J. Neurophysiol.20, 156–166 (1957)Google Scholar
  5. Bligh, J.: Temperature regulation in mammals and other vertebrates. Amsterdam: North-Holland 1973Google Scholar
  6. Freeman, W. J., Davis, D. D.: Effects on cats of conductive hypothalamic cooling. Am. J. Physiol.197, 145–148 (1959)Google Scholar
  7. Hammel, H. T.: Neurons and temperature regulation. In: Physiological controls and regulations (W. S. Yamamoto, J. R. Brobeck, eds.), pp. 71–97. Philadelphia: Saunders 1965Google Scholar
  8. Hammel, H. T.: Regulation of internal body temperature. Ann. Rev. Physiol.30, 641–710 (1968)Google Scholar
  9. Hammel, H. T., Simon-Oppermann, Ch., Jessen, C., Simon, E.: Cooling hypothalamus reduces thermo-and osmoregulatory functions in conscious Pekin duck. Fed. Proc.35, 481 (1976)Google Scholar
  10. Hardy, J. D.: Posterior hypothalamus and the regulation of body temperature. Fed. Proc.32, 1564–1571 (1973)Google Scholar
  11. Hemingway, A.: Shivering. Physiol. Rev.43, 397–422, (1963)Google Scholar
  12. Hume, D. M., Ganong, W. F.: A method for accurate placement of electrodes in the hypothalamus of the dog. Electroencephalogy Clin. Neurophysiol.8, 136–140 (1956)Google Scholar
  13. Isenschmid, R., Krehl, L.: Über den Einfluß des Gehirns auf die Wärmeregulation. Arch. Exp. Pathol. Pharmacol.70, 109–134 (1912)Google Scholar
  14. Jessen, C.: Two-dimensional determination of thermosensitive sites within the goat's hypothalamus. J. Appl. Physiol.40, 514–520 (1976)Google Scholar
  15. Jessen, C., Clough, D. P.: Evaluation of hypothalamic thermosensitivity by feedback signals. Pflügers Arch.345, 43–59 (1973)Google Scholar
  16. Keller, A. D., McClaskey, E. B.: Localization, by the brain slicing method, of the level or levels of the cephalic brain stem upon which effective heat dissipation is dependent. Am. J. Phys. Med.43, 181–213 (1964)Google Scholar
  17. Klüver, H., Barrera, E.: A method for the combined staining of cells and fibers in the nervous system. J. Neuropathol. Exp. Neurol.12, 400–403 (1953)Google Scholar
  18. Linder, A.: Statistische Methoden. Basel: Birkhäuser 1960Google Scholar
  19. Martin, H., Göbel, D., Simon, E.: Vasodilator, vs vasoconstrictor responses in the skin to cooling hypothalamus of anesthetized dogs. J. Thermal Biology2, 49–52 (1977)Google Scholar
  20. Nutik, S. L.: Posterior hypothalamic neurons responsive to preoptic region thermal stimulation. J. Neurophysiol.36, 238–249 (1973a)Google Scholar
  21. Nutik, S. L.: Convergence of cutaneous and preoptic region thermal afferents on posterior hypothalamic neurons. J. Neurophysiol.36, 250–257 (1973b)Google Scholar
  22. Sajonski, H.: Zur makroskopischen und mikroskopischen Anatomie der Hypophyse und des Hypothalamus von Schaf und Ziege. Teil 1. Wiss. Z. Humboldt-Univ. Berlin, Math.-Nat. R. IX, 233–258 (1959/60)Google Scholar
  23. Simon, E.: comparative physiology of temperature regulation: the controlling system in vertebrates. Proc. Intern. Union Physiol. Sci., Vol. XII, p. 806 (1977)Google Scholar
  24. Simon-Oppermann, Ch., Hammel, H. T., Simon, E., Jessen, C.: Evidence for inhibition of ADH-release by hypothalamic cooling in conscious Pekin duck. Pflügers Arch.,365, Suppl. R 26 (1976)Google Scholar
  25. Simon, E., Simon-Oppermann, Ch., Hammel, H. T., Kaul, R., Maggert, J.: Effects of altering rostral brain stem temperature on temperature regulation in the Adelie Penguin, Pygoscelis Adeliae. Pflügers Arch.362, 7–13 (1976)Google Scholar
  26. Simon-Oppermann Ch. Simon, E., Jessen, C., Hammel, H. T.: Hypothalamic thermosensitivity in conscious Pekin ducks. Am. J. Physiol. (in press, 1978)Google Scholar
  27. Stuart, D. G., Kawamura, Y., hemingway, A., Price, W. M.: Effects of septal and hypothalamic lesions on shivering. Exp. Neurol.5, 335–347 (1962)Google Scholar
  28. Tindal, J. S., Knaggs, G. S., Turvey, A.: The forebrain of the goat in stereotaxic coordinates. J. Anat. (Lond.)103, 457–469 (1968)Google Scholar
  29. Wünnenberg, W.: Alteration of EEG activity of the hypothalamus by thermal stimulation of the spinal cord. Pflügers Arch.344, 75–82 (1973)Google Scholar
  30. Wünnenberg, W., Hardy, J. D.: Response of single units of the posterior hypothalamus to thermal stimulation. J. Appl. Physiol.33, 547–552 (1972)Google Scholar
  31. Zeisberger, E., Brück, K.: Effects of intrahypothalamically injected noradrenergic and cholinergic agents on thermoregulatory responses. In: The Pharmacology of thermoregulation (E. Schönbaum, P. Lomax, eds.) pp. 232–243. Basel: Karger 1973Google Scholar
  32. Zeisberger, E., Brück, K.: Alteration of shivering threshold in cold-and warm-adapted Guinea pigs following intrahypothalamic injections of noradrenaline and of an adrenergic alpha-receptor blocking agent. Pflügers Arch.362, 113–119 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Stefan Puschmann
    • 1
    • 2
  • Claus Jessen
    • 1
    • 2
  1. 1.Zentrum für Physiologie der UniversitätGiessenFederal Republic of Germany
  2. 2.Max-Planck-Institut für Physiologische und Klinische ForschungW. G. Kerckhoff-InstitutBad NauheimFederal Republic of Germany

Personalised recommendations