Skip to main content
Log in

Effects of bradykinin on electrical properties of Madin-Darby canine kidney epithelioid cells

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

In the present study we have investigated the influence of bradykinin on the potential difference across the cell membrane (PD) of Madin Darby Canine Kidney (MDCK)-cells. In the absence of bradykinin PD averages −52.6±0.9 mV (n=52). Increasing extracellular potassium concentration from 5.4 to 10 and 20 mmol/l depolarizes the cell membrane by +5.2±0.3 mV (n=8) and +14.9±1.0 mV (n=9), respectively. The application of 0.1 μmol/l bradykinin leads to a transient hyperpolarization of the cell membrane to −70.3±0.6 mV (n=30). During this transient hyperpolarization increasing extracellular potassium concentration from 5.4 to 10 and 20 mmol/l depolarizes the cell membrane by +10.4±0.7 mV (n=10) and +29.2±0.8 mV (n=8) respectively. Application of fragments of bradykinin (0.1 μmol/l) are without significant effect on the potential difference across the cell membrane. 1 mmol/l barium depolarizes the cell membrane by +15.8±1.2 mV (n=9) and abolishes the effect of step increase of extracellular potassium concentration from 5.4 to 10 mmol/l. In the presence of barium, bradykinin leads to a transient hyperpolarization by −24.7±1.3 mV (n=7). During this transient hyperpolarization, the cell membrane is sensitive to extracellular potassium concentration despite the continued presence of barium. In the nominal absence of extracellular calcium, bradykinin leads to a transient hyperpolarization, which can be elicited only once. The transient hyperpolarization is not affected by the presence of verapamil or indomethacin. In conclusion, bradykinin hyperpolarizes MDCK-cells by increasing the apparent potassium conductance. This effect is probably mediated by increase of intracellular calcium activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasingham CM, Nasjletti A (1979) Contribution of renal prostaglandins to the natriuretic action of bradykinin in the dog. Am J Physiol 237(3):F182–F187

    Google Scholar 

  2. Brazy PC, Trellis DR, Klotman PE (1985) Bradykinin stimulation of oxidative metabolism in renal cortical tubules from rabbit: Possible role of arachidonic acid. J Clin Invest 76:1812–1818

    Google Scholar 

  3. Brown CDA, Simmons NL (1981) Catecholamine-stimulation of Cl secretion in MDCK cells epithelium. Biochim Biophys Acta 649:427–435

    Google Scholar 

  4. Brown CDA, Simmons NL (1982) K+ transport in “tight” epithelial monolayers of MDCK-cells: Evidence for a calciumactivated K+ channel. Biochim Biophys Acta 690:95–105

    Google Scholar 

  5. Cereijido M, Robbins E, Sabatini DD, Stefani E (1984) Cell-to-cell communication in monolayers of epithelioid cells (MDCK) as a function of the age of the monolayer. J Membr Biol 81:41–48

    Google Scholar 

  6. Cuthbert AW, Margolius HS (1982) Kinins stimulate net chloride secretion by the rat colon. Br J Pharmacol 75:587–598

    Google Scholar 

  7. Cuthbert AW, Halushka PV, Kessel D, Margolius HS, Wise WC (1984) Kinin effects on chloride secretion do not require eicosanoid synthesis. Br J Pharmacol 83:549–554

    Google Scholar 

  8. Cuthbert AW, Halushka PV, Margolius HS, Spayne JA (1984) Mediators of the secretory response to kinins. Br J Pharmacol 82:597–607

    Google Scholar 

  9. Cuthbert AW, Halushka PV, Margolius HS, Spayne JA (1984) Role of calcium ions in kinin-induced chloride secretion. Br J Pharmacol 82:587–595

    Google Scholar 

  10. Cuthbert AW, George AM, MacVinish L (1985) Kinin effects on electrogenic ion transport in primary cultures of pig renal papillary collecting tubule cells. Am J Physiol 249:F439–F447

    Google Scholar 

  11. Fleckenstein A (1983) History of calcium antagonists. Circ Res 52(suppl. I):3–16

    Google Scholar 

  12. Gonzalez-Mariscal L, Chavez de Ramirez B, Cereijido M (1985) Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol 86:113–125

    Google Scholar 

  13. Gstraunthaler G, Pfaller W, Kotanko P (1985) Biochemial characterization of renal epithelial cell cultures (LLC-PK1 and MDCK). Am J Physiol 248:F536–F544

    Google Scholar 

  14. Hassid A (1981) Transport-active renal tubular epithelial cells (MDCK and LLC-PK1) in culture. Prostaglandin biosynthesis and its regulation by peptide hormones and ionophore Prostaglandins 21:985–1001

    Google Scholar 

  15. Hassid A (1983) Modulation of cyclic 3′5′-adenosine monophosphate in cultured renal (MDCK) cells by endogenous prostaglandins. J Cell Physiol 116:297–302

    Google Scholar 

  16. Kauker ML (1980) Bradykinin action on the efflux of luminal22Na in the rat nephron. J Pharmacol Exp Ther 214:119–123

    Google Scholar 

  17. Kolb HA, Brown CDA, Murer H (1985) Identification of a voltage-dependent anion channel in the apical membrane of a Cl-secretory epithelium (MDCK). Pflügers Arch 403:262–265

    Google Scholar 

  18. Lang F, Defregger M, Paulmichl M (1986) Apparent chloride conductance of subconfluent Madin Darby canine kidney cells. Pflügers Arch 407:158–162

    Google Scholar 

  19. Latorre R, Coronado R, Vergara C (1984) K+ channels gated by voltage and ions. Ann Rev Physiol 46:485–495

    Google Scholar 

  20. Lewis MG, Spector AA (1981) Differences in types of prostaglandins produced by two MDCK canine kidney cell sublines Prostaglandins 21(6):1025–1033

    Google Scholar 

  21. Lewis MG, Kaduce TL, Spector AA (1981) Effect of essential polyunsaturated fatty acid modifications on prostaglandin production by MDCK canine kidney cells. Prostaglandins 22(5):747–761

    Google Scholar 

  22. MacLaughlin M, Mello Aires de M, Malnic G (1985) Verapamil effect on renal function of normotensive and hypertensive rats. Renal Physiol 8:112–119

    Google Scholar 

  23. Madin SH, Darby NB (1958) As catalogued in: American Type Culture Collection Catalogue of strains 2:574–576

    Google Scholar 

  24. Manning DC, Snyder SH, Kachur JF, Miller RJ, Field M (1982) Bradykinin receptor-mediated chloride secretion in intestinal function. Nature 299:256–259

    Google Scholar 

  25. Marin-Grez M (1974) The influence of antibodies against bradykinin on isotonic saline diuresis in the rat. Pflügers Arch 350:231–239

    Google Scholar 

  26. Marin-Grez M, Cottone P, Carretero OA (1972) Evidence for an involvement of kinins in regulation of sodium excretion. Am J Physiol 223(4):794–796

    Google Scholar 

  27. Margolius HS (1984) The kallikrein-kinin system and the kidney. Ann Rev Physiol 46:309–326

    Google Scholar 

  28. McRoberts JA, Erlinger S, Rindler MJ, Saier MH Jr (1982) Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. J Biol Chem 257(5):2260–2266

    Google Scholar 

  29. Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Ann Rev Biophys Bioeng 7:1–18

    Google Scholar 

  30. Musch MW, Miller RJ, Field M, Siegel MI (1982) Stimulation of colonic secretion by lipoxygenase metabolites of arachidonic acid. Science 217:1255–1256

    Google Scholar 

  31. Musch MW, Kachur JF, Miller RJ, Field M (1983) Bradykinin-stimulated electrolyte secretion in rabbit and guinea pig intestine: Involvement of arachidonic acid metabolites. J Clin Invest 71:1073–1083

    Google Scholar 

  32. Orce GG, Castillo GA, Margolius HS (1980) Inhibition of shorts-circuit current in toad urinary bladder by inhibitors of glandular kallikrein. Am J Physiol 239:F459–F465

    Google Scholar 

  33. Orce GG, Castillo GA, Margolius HS (1981) Kallikrein inhibitors decrease short-circuit current of inhibiting sodium uptake. Hypertension 3:92–95

    Google Scholar 

  34. Pidikiti N, Gamero D, Gamero J, Hassid A (1985) Bradykininevoked modulation of cytosolic Ca2+ concentrations in cultured renal epithelial (MDCK) cells. Biochem Biophys Res Commun 130:807–813

    Google Scholar 

  35. Paulmichl M, Gstraunthaler G, Lang F (1985) Electrical properties of Madin-Darby canine kidney cells: Effects of extracellular potassium and bicarbonate. Pflügers Arch 405:102–107

    Google Scholar 

  36. Paulmichl M, Defregger M, Lang F (1986) Effects of epinephrine on electrical properties of Madin-Darby canine kidney cells. Pflügers Arch 406:367–371

    Google Scholar 

  37. Paulmichl M, Friedrich F, Lang F (1986) Electrical properties of Madin-Darby canine kidney cells: Effects of extracellular sodium and calcium. Pflügers Arch 406:258–263

    Google Scholar 

  38. Petersen OH, Maruyama Y (1984) Calcium-activated potassium channels and their role in secretion. Nature 307:693–696

    Google Scholar 

  39. Putney JW Jr (1979) Stimulus-permeability coupling: Role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev 30(2):209–245

    Google Scholar 

  40. Reiser G, Hamprecht B (1982) Bradykinin induces hyperpolarizations in rat glioma cells and in neuroblastoma x glioma hybrid cells. Brain Res 239:191–199

    Google Scholar 

  41. Reiser G, Hamprecht B (1985) Bradykinin causes a transient rise of intracellular Ca2+ activity in cultured neural cells. Pflügers Arch 405:260–264

    Google Scholar 

  42. Richardson JCW, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36

    Google Scholar 

  43. Rindler MJ, Chuman LM, Shaffer L, Saier MH Jr (1979) Retention of differentiated properties in an established dog kidney: Epithelial cell line (MDCK). J Cell Biol 81:635–648

    Google Scholar 

  44. Rindler MJ, McRoberts JA, Saier MH Jr (1982) (Na+, K+)-cotransport in the Madin-Darbin canine kidney cell line. J Biol Chem 257:2254–2259

    Google Scholar 

  45. Saier MH Jr, Boyden DA (1984) Mechanism, regulation and physiological significance of the loop diuretic-sensitive NaCl/KCl symport system in animal cells. Mol Cell Biochem 59:11–32

    Google Scholar 

  46. Schuster VL (1985) Mechanism of bradykinin, ADH, and cAMP interaction in rabbit cortical collecting duct. Am J Physiol 249:F645–F653

    Google Scholar 

  47. Schuster VL, Kokko JP, Jacobson HR (1984) Interactions of lysyl-bradykinin and antidiuretic hormone in the rabbit cortical collecting tubule. J Clin Invest 73:1659–1667

    Google Scholar 

  48. Schwarz W, Passow H (1983) Ca2+-activated K+ channels in erythrocytes and excitable cells. Ann Rev Physiol 45:359–374

    Google Scholar 

  49. Scicli GA, Carretero OA (1986) Renal kallikrein-kinin system. Kidney Int 29:120–130

    Google Scholar 

  50. Shayman JA, Morrison AR (1985) Bradykinin-induced changes in phosphatidyl inositol turnover in cultured rabbit papillary collecting tubule cells. J Clin Invest 76:978–984

    Google Scholar 

  51. Shayman JA, Hruska KA, Morrison AR (1986) Bradykinin stimulates increased intracellular calcium in papillary collecting tubules of the rabbit. Biochem Biophys Res Commun 134:299–304

    Google Scholar 

  52. Simmons NL (1981) The action of ouabain upon chloride secretion in cultured MDCK epithelium. Biochim Biophys Acta 646:243–250

    Google Scholar 

  53. Simmons NL (1981) Stimulation of Cl secretion by exogenous ATP in cultured MDCK epithelial monolayers. Biochim Biophys Acta 646:231–242

    Google Scholar 

  54. Simmons NL, Brown CDA, Rugg EL (1984) The action of epinephrine on Madin-Darby canine kidney cells. Fed Proc 43:2225–2229

    Google Scholar 

  55. Taylor A, Windhager EE (1979) Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport. Am J Physiol 236:F505–F512

    Google Scholar 

  56. Tomita K, Pisano JJ (1984) Binding of (3H) bradykinin in isolated nephron segments of the rabbit. Am J Physiol 246:F732–F737

    Google Scholar 

  57. Tomita K, Pisano JJ, Knepper MA (1985) Control of sodium and potassium transport in the cortical collecting duct of the rat: Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest 76:132–136

    Google Scholar 

  58. Taub M, Chuman L, Saier MH Jr, Sato G (1979) Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc Natl Acad Sci USA 76:3338–3342

    Google Scholar 

  59. Valdeolmillos M, Garcia-Sancho J, Herreros B (1982) Ca2+-dependent K+ transport in the Ehrlich ascites tumor cell. Biochim Biophys Acta 685:273–278

    Google Scholar 

  60. Valentich JD, Tchao R, Leighton J (1981) Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule. Ann NY Acad Sci 372:384–405

    Google Scholar 

  61. Willis LR, Ludens JH, Hook JB, Williamson HE (1969) Mechanisms of natriuretic action of bradykinin. Am J Physiol 217:1–5

    Google Scholar 

  62. Windhager EE, Taylor A (1983) Regulatory role of intracellular calcium ions in epithelial Na transport. Annu Rev Physiol 45:519–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulmichl, M., Friedrich, F. & Lang, F. Effects of bradykinin on electrical properties of Madin-Darby canine kidney epithelioid cells. Pflugers Arch. 408, 408–413 (1987). https://doi.org/10.1007/BF00581137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581137

Key words

Navigation