Skip to main content
Log in

Fracture mechanism maps for advanced structural ceramics

Part 2 Sintered silicon nitride

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The static fatigue behaviour of a commercial sintered silicon nitride with yttria and alumina sintering aids was controlled by slow crack growth or creep fracture. A fracture map depicts the stress-temperature regimes where each mechanism is dominant. Devitrification of the grain boundary phase at intermediate temperatures (1000 and 1100 °C) radically altered the static fatigue resistance. The principal devitrification products in the high tensile stressed regions were (δ-Y2Si2O7 and N apatite, although some residual glass was still present. The static fatigue and creep resistances at higher temperatures (>1200 °C) are limited by both the residual glassy phase and the δ)-Y2Si2O7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Quinn, in “Ceramic Materials and Components for Engines”, edited by W. Bunk and H. Hausner, (Deutsche Keramische Gesellschaft, Berlin, 1986) p. 931.

    Google Scholar 

  2. R. K. Govila,J. Mater. Sci. 20 (1985) 4345.

    Google Scholar 

  3. G. D. Quinn,Static Fatigue of a Sintered Silicon Nitride, US Army Materials Technology Laboratory, Technical Report TR 84-40 (1984).

  4. I. Oda, M. Matsui andT. Soma in “Progress in Nitrogen Ceramics”, edited by F. Riley, (Martinus-Nijhoff, Boston, 1983) p. 501.

    Google Scholar 

  5. M. Foley andR. Tressler, in “Ceramic Materials and Components for Engines”, (The American Ceramic Society, Westerville, Ohio, 1989) p. 457.

    Google Scholar 

  6. M. R. Foley andR. E. Tressler,Adv. Ceram. Mater. 3 (1988) 382.

    Google Scholar 

  7. P. K. Khandelwal, J. Chang andP. W. Heitman, in “Fracture Mechanics of Ceramics”, Vol 8, edited by R. Bradt, A. Evans, D. Hasselman and F. F. Lange, (Plenum, New York, 1986) p. 351.

    Google Scholar 

  8. G. D. Quinn,J. Mater. Sci. 25 (1990) 4361.

    Google Scholar 

  9. C. L. Quackenbush andJ. T. Smith, “GTE Sintered Silicon Nitride”, International Gas Turbine Conference, Amsterdam, NL. June 1984, American Society of Mechanical Engineers paper 84-GT-228.

  10. J. T. Smith andC. L. Quackenbush,Amer. Ceram. Soc. Bull. 59 (1980) 529.

    Google Scholar 

  11. C. L. Quackenbush andJ. T. Smith,ibid. 59 (1980) 533.

    Google Scholar 

  12. L. Allard andT. Nolan, “Electron Microscopy of Tensile Cyclic Fatigue Tested Silicon Nitride Ceramics”, presented at 1988 Annual Meeting of the American Ceramic Society, April 1988.

  13. US Army Military Standard MIL STD 1942(MR) “Flexural Strength of High Performance Ceramics at Ambient Temperature”, November 1983, US Army Materials Technology Laboratory, Watertown, Massachusetts.

  14. A. E. Pasto, J. T. Neil andC. L. Quackenbush, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. Hench and D. Uhlrich, (John Wiley, New York, 1984) p. 476.

    Google Scholar 

  15. T. E. Easler, R. C. Bradt andR. E. Tressler,J. Amer. Ceram. Soc. 65 (1982) 317.

    Google Scholar 

  16. G. D. Quinn,Ceram. Eng. Sci. Proc. 3 (1982) 77.

    Google Scholar 

  17. T. H. Service andJ. E. Ritter,Adv. Ceram. Mater. 3 (1988) 49.

    Google Scholar 

  18. G. Grathwohl, in “Deformation of Ceramic Materials”, edited by R. Tressler and R. Bradt, (Plenum, New York, 1984) p. 573.

    Google Scholar 

  19. S. M. Wiederhorn, B. J. Hockey, R. F. Krause Jr. andK. Jakus,J. Mater. Sci. 21 (1986) 810.

    Google Scholar 

  20. D. Wilkinson,J. Amer. Ceram. Soc. 71 (1988) 562.

    Google Scholar 

  21. G. N. Babini, A. Bellosi andP. Vincenzi,J. Mater. Sci. 19 (1984) 3487.

    Google Scholar 

  22. L. K. L. Falk andG. L. Dunlop,ibid. 22 (1987) 4369.

    Google Scholar 

  23. W. Braue, G. Woetting andG. Ziegler, in “Ceramic Materials and Components for Engines”, edited by W. Bunk and H. Hausner, (Deutsche Keramische Gesellschaft, Berlin, 1986) p. 503.

    Google Scholar 

  24. W. Braue, G. Woetting andG. Ziegler,J. Physique, Collogue C1 (1986) 341.

    Google Scholar 

  25. J. T. Smith,J. Amer. Ceram. Soc. 60 (1977) 465.

    Google Scholar 

  26. G. Thomas, in “Ceramic Microstructures '86, The Role of Interfaces,” edited by J. Pask and A. G. Evans, (Plenum, New York, 1987) p. 55.

    Google Scholar 

  27. T. R. Dinger, R. S. Rai andG. Thomas,J. Amer. Ceram. Soc. 71 (1988) 236.

    Google Scholar 

  28. K. Liddell andD. P. Thompson,Trans. Brit. Ceram. Soc. 85 (1986) 17.

    Google Scholar 

  29. L. Kaufman, F. Hayes andD. Birnie,Calphad 5 (1981) 163.

    Google Scholar 

  30. D. R. Clarke andG. Thomas,J. Amer. Ceram. Soc. 61 (1978) 114.

    Google Scholar 

  31. A. Thorel, J. Y. Laval, D. Broussard, G. Teste de Sagey andG. Schiffmacher, in “Ceramic Microstructures '86”, The Role of Interfaces, edited by J. Pask and A. G. Evans (Plenum, New York, 1987) p. 263.

    Google Scholar 

  32. R. R. Wills, S. Holmquist, J. A. Wimmer andJ. A. Cunningham,J. Mater. Sci. 11 (1976) 1305.

    Google Scholar 

  33. F. F. Lange, D. R. Clarke andB. I. Davis,ibid. 15 (1980) 611.

    Google Scholar 

  34. D. R. Clarke, in “Surfaces and Interfaces in Ceramics and Ceramic Metal Systems”, edited by J. Pask and A. G. Evans, (Plenum, New York 1981) p. 307.

    Google Scholar 

  35. R. Raj andF. F. Lange,Acta Metall. 29 (1981) 1993.

    Google Scholar 

  36. S. Hampshire, R. A. L. Drew andK. H. Jack,Phys. Chem. Glasses,26 (1985) 182.

    Google Scholar 

  37. N. Tighe, S. M. Wiederhorn, J. J. Chuang andC. L. Mcdaniel, in “Deformation in Ceramic Materials II”, edited by R. Tressler and R. Bradt (Plenum, New York, 1984) p. 587.

    Google Scholar 

  38. D. S. Wilkinson, M. Chadwick andG. Robertson, “High Temperature Stability of Structural Ceramics”, in Proceedings of International Symposium on Advanced Structural Materials, Montreal, August 1988, (Pergamon, New York, 1990).

    Google Scholar 

  39. U. Ernstberger, G. Grathwohl andF. Thuemmler, in “Ceramic Materials and Components for Engines”, edited by W. Bũnk and Haũsner (Deũtsche Keramische Gesellschaft, Berlin, 1986) p. 485.

    Google Scholar 

  40. A. Tsuge andK. Nishida,Amer. Ceram. Soc. Bull. 57 (1978) 424.

    Google Scholar 

  41. F. Wakai, S. Sakaguchi, Y. Matsumo andH. Okuda, in “Ceramic Components for Engines”, edited by S. Somiya, E. Kanai and K. Ando, (KTK Scientific Publishers and D. Reidel, 1984) p. 279.

  42. L. Pierce, D. Mieskowski andW. Sanders,J. Mater. Sci. 21 (1986) 1345.

    Google Scholar 

  43. W. Lee, C. Drummond III, G. Hilmas, J. Kiser andW. Sanders,Ceram. Eng. Sci. Proc. 9 (1988) 1355.

    Google Scholar 

  44. W. Lee andG. Hilmas,J. Amer. Ceram. Soc. 72 (1989) 1931.

    Google Scholar 

  45. R. Yeckley andK. Siebein, in “Ceramic Materials and Components for Engines”, edited by V. Tennery (American Ceramic Society, Westerville, Ohio, 1989) p. 751.

    Google Scholar 

  46. K. Liu andC. R. Brinkman, “Dynamic Tensile Cyclic Fatigue of Si3N4”, in Proceedings of the 25th Automotive Technology Development Contractors Coordination Meeting, Dearborn, Michigan, October 1987 (Society of Automotive Engineers, Warrendale, PA, 1987) pp. 189–197.

    Google Scholar 

  47. K. Moore, D. Koester andR. F. Davis, “Microstructural Characterization of Monolithic Si3N4 and SiC Whisker Reinforced Si3N4 Composites Before and After Creep Deformation” presented at the Annual Meeting of the American Ceramic Society, Indianapolis, April 1989.

  48. A. E. Pasto, W. C. Van Schalwyk andF. M. Mahoney, in “Ceramic Materials and Components for Engines”, edited by V. Tennery (American Ceramic Society, Westerville, Ohio, 1989) p. 776.

    Google Scholar 

  49. G. D. Quinn andR. N. Katz,Amer. Ceram. Soc. Bull. 51 (1978) 1057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, G.D., Braue, W.R. Fracture mechanism maps for advanced structural ceramics. J Mater Sci 25, 4377–4392 (1990). https://doi.org/10.1007/BF00581097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581097

Keywords

Navigation