Skip to main content
Log in

Fracture mechanism maps for advanced structural ceramics

Part 1 Methodology and hot-pressed silicon nitride results

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The static fatigue behaviour of advanced structural ceramics can be controlled by a variety of failure mechanisms. A fracture mechanism map can define the stress-temperature regimes where the different mechanisms are dominant. The static fatigue resistance of a hot-pressed silicon nitride with magnesia sintering aid is limited by slow crack growth or creep fracture depending upon the specific stress-temperature conditions. The flexural fracture map is considerably refined relative to earlier versions, and in conjunction with available tension data, was used to create a tension fracture map. The fracture map brings together the findings of a number of studies and can be appreciated by materials scientists and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Quinn,Ceram. Eng. Sci. Proc. 3 (1–2) (1982) 77.

    Google Scholar 

  2. S. M. Wiederhorn, B. J. Hockey, R. F. Krause andK. Jakus,J. Mater. Sci. 21 (1986) 810.

    Google Scholar 

  3. S. M. Johnson, B. J. Dalgleish andA. G. Evans,J. Amer. Ceram. Soc. 67 (1984) 759.

    Google Scholar 

  4. W. Bluementhal andA. G. Evans,ibid. 67 (1984) 751.

    Google Scholar 

  5. T. Okada andG. Sines,ibid. 66 (1983) 719.

    Google Scholar 

  6. A. G. Robertson andD. S. Wilkinson, in “Fracture Mechanics of Ceramics”, Vol. 7, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. Lange (Plenum, New York, 1986) p. 311.

    Google Scholar 

  7. D. P. H. Hasselman, A. Venkateswaren andC. Shih, in “Surfaces and Interfaces in Ceramic and Ceramic Metal Systems”, Materials Science Research, Vol. 14, edited by J. Pask and E. Evans (Plenum, New York, 1981) p. 323.

    Google Scholar 

  8. P. J. Wray,J. Appl. Phys. 40 (1969) 4018.

    Google Scholar 

  9. R. J. Fields, T. Weerasooriya andM. F. Ashby,Met. Trans. 11A (1980) 333.

    Google Scholar 

  10. C. Gandhi andM. Ashby,Acta Metall. 27 (1979) 1565.

    Google Scholar 

  11. G. D. Quinn andW. R. Braue,J. Mater. Sci. 25 (1990).

  12. G. D. Quinn, in “Methods for Assessing the Structural Reliability of Brittle Materials”, ASTM STP 844, edited by Freiman and C. Hudson (American Society of Testing and Materials, Philadelphia, Pennsylvania, 1984) p. 177.

    Google Scholar 

  13. Idem, Ceram. Engng Sci. Proc. 5 (1984) 596.

    Google Scholar 

  14. Idem, in “Fracture Mechanics of Ceramics”, Vol. 8, edited by R. Bradt, A. Evans, D. Hasselman and F. Lange (Plenum, New York, 1986) p. 319.

    Google Scholar 

  15. M. L. Torti, in “Ceramics for High Performance Applications III, Reliability”, edited by E. Lenoe, R. Katz and J. Burke (Plenum, New York, 1983) p. 261.

    Google Scholar 

  16. G. D. Quinn, in “Ceramic Materials and Components for Engines”, edited by W. Bunk and H. Hausner (Deutsche Keramische Gessellschaft, Berlin, 1986) p. 931.

    Google Scholar 

  17. G. D. Quinn andJ. B. Quinn, in “Fracture Mechanics of Ceramics”, Vol. 6, edited by R. Bradt, A. Evans, D. Hasselman and F. Lange (Plenum, New York, 1983) p. 603.

    Google Scholar 

  18. G. D. Quinn, “Characterization of Turbine Ceramics After Long-Term Environmental Exposure”, US Army AMMRC Technical Report TR80-15 (Army Materials Technology Laboratory, Watertown, Massachusetts, 1980).

    Google Scholar 

  19. Idem, “Guide to the Construction of A Simple 1500 C Test Furnace”, US Army AMMRC Technical Report TN 77-4, August 1977 (Army Materials Technology Laboratory, Watertown, Massachusetts, republished as TR 83-1, January 1983).

    Google Scholar 

  20. H. Cohrt, G. Grathwohl andF. Thümmler,Res. Mech. Lett. 1 (1981) 159.

    Google Scholar 

  21. G. Grathwohl, in “Deformation of Ceramic Materials II”, edited by R. Tressler and R. Bradt (Plenum, New York, 1984) p. 573.

    Google Scholar 

  22. T. Fett,J. Mater. Sci. Lett. 6 (1987) 967.

    Google Scholar 

  23. T. Fett andD. Munz,Int. J. High Tech. Ceram. 4 (1988) 281.

    Google Scholar 

  24. T. Fett, K. Keller andD. Munz,J. Mater. Sci. 23 (1988) 467.

    Google Scholar 

  25. R. Arons andJ. Tien,ibid. 15 (1980) 2046.

    Google Scholar 

  26. D. F. Carroll, T. J. Chuang andS. M. Wiederhorn,Ceram. Engng Sci. Proc. 9 (1988) 635.

    Google Scholar 

  27. D. S. Wilkinson,J. Amer. Ceram. Soc. 71 (1988) 562.

    Google Scholar 

  28. G. Das, M. G. Mendiratta andG. R. Cornish,J. Mater. Sci. 17 (1982) 2486.

    Google Scholar 

  29. G. Grathwohl andF. Thümmler,ibid. 13 (1978) 1177.

    Google Scholar 

  30. A. Venkateswaren andD. P. H. Hasselman,ibid. 16 (1981) 1627.

    Google Scholar 

  31. A. R. Rosenfield, W. H. Duckworth andD. K. Shetty,J. Amer. Ceram. Soc. 68 (1985) 485.

    Google Scholar 

  32. K. Jakus andS. Wiederhorn,ibid. 71 (1988) 832.

    Google Scholar 

  33. S. Wiederhorn, L. Chuck, E. Fuller andJ. Tighe, in “Tailoring of Multiphase and Composite Ceramics”, Materials Science Research, Vol. 20, edited by R. E. Tressler, G. L. Mecholsky, C. G. Pantano and R. E. Newnham (Plenum, New York, 1986) p. 755.

    Google Scholar 

  34. R. J. Charles,J. Appl. Phys. 29 (1958) 1657.

    Google Scholar 

  35. A. G. Evans, L. R. Russell andD. W. Richerson,Met Trans. 6A (1975) 707.

    Google Scholar 

  36. R. Davidge, J. McLaren andG. Tappin,J. Mater. Sci. 8 (1973) 1699.

    Google Scholar 

  37. J. Ritter Jr, in “Fracture Mechanics of Ceramics 4”, edited by R. Bradt, D. Hasselman and F. Lange (Plenum, New York, 1978) p. 667.

    Google Scholar 

  38. G. D. Quinn andL. Swank,Commun. Amer. Ceram. Soc., January (1983) C31.

  39. G. Trantina,J. Amer. Ceram. Soc. 62 (1979) 377.

    Google Scholar 

  40. R. Govila, “Ceramic Life Prediction Parameters”, US Army Technical Report, TR 80-18 (US Army Materials Technology Laboratory, Watertown, Massachusetts, May 1980).

    Google Scholar 

  41. Idem, J. Amer. Ceram. Soc. 65 (1982) 15.

    Google Scholar 

  42. N. Tighe andS. Wiederhorn, in “Fracture Mechanics of Ceramics”, Vol. 6, p. 403.

  43. R. Bratton andD. Miller, in “Ceramics for High Performance Applications II”, edited by J. Burke, E. Lenoe and R. Katz (Brook Hill, Chestnut Hill, Massachusetts, 1978) p. 689.

    Google Scholar 

  44. D. Miller, C. Anderson, S. Singhal, F. Lange, E. Diaz, R. Kossowsky andR. Bratton, “Brittle Materials Design, High Temperature Gas Turbine Material Technology, Final Report”, CTR 76-32 Vol. 4 (US Army Materials and Mechanics Research Center, Dec. (1976).

  45. F. F. Lange,Int. Met. Rev. 7 (1980) 1.

    Google Scholar 

  46. N. J. Tighe,J. Mater. Sci. 13 (1978) 1455.

    Google Scholar 

  47. R. Kossowsky, D. Miller andE. Diaz,ibid. 10 (1975) 983.

    Google Scholar 

  48. N. J. Tighe, S. M. Wiederhorn, T. J. Chuang andC. L. Mcdaniel, “Deformation in Ceramic Materials II”, edited by R. Tressler and R. Bradt (Plenum, New York, 1984) p. 587.

    Google Scholar 

  49. K. Jakus, J. R. Ritter Jr andJ. P. Fahey,Commun. Amer. Ceram. Soc., September (1982) C143.

  50. S. Ud Din andP. Nicholson,J. Mater. Sci. 10 (1975) 1375.

    Google Scholar 

  51. D. R. Mosher, R. Raj andR. Kossowsky,J. Mater. Sci. 11 (1976) 49.

    Google Scholar 

  52. M. Seltzer,Amer. Ceram. Soc. Bull. 56 (1977) 418.

    Google Scholar 

  53. W. Weibull,J. Appl. Mech. 18 (1951) 293.

    Google Scholar 

  54. D. G. S. Davies,Proc. Brit. Ceram. Soc. 22 (1973) 429.

    Google Scholar 

  55. N. J. Tighe andS. M. Wiederhorn, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. Bradt, A. Evans, D. Hasselman and F. Lange (Plenum, New York, 1983) p. 403.

    Google Scholar 

  56. F. C. Monkman andN. J. Grant,Proc. ASTM 56 (1956) 593.

    Google Scholar 

  57. G. Grathwohl,Int. J. High Tech. Ceram. 4 123 (2) (1988).

    Google Scholar 

  58. U. Ernstberger, G. Grathwohl andF. Thümmler, in “Ceramic Materials and Components for Engines”, edited by W. Bunk and H. Hausner (Deutsche Keramische Gesselschaft, Berlin, 1986) p. 485.

    Google Scholar 

  59. G. Grathwohl, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. Owen (Pineridge Press, Swansea, UK, 1984) p. 565.

    Google Scholar 

  60. F. F. Lange andB. I. Davis,Bull. Amer. Ceram. Soc. 59 (1980) 827.

    Google Scholar 

  61. F. F. Lange, B. I. Davis andM. G. Metcalf,J. Mater. Sci. 18 (1983) 1497.

    Google Scholar 

  62. K. Jakus, J. Ritter Jr andW. P. Rogers,J. Amer. Ceram. Soc. 67 (1984) 471.

    Google Scholar 

  63. E. M. Lenoe, unpublished results.

  64. G. Quinn andG. Wirth, “Biaxial Static Fatigue of Silicon Nitride”, in “Ceramic Materials and Components for Engines”, edited by V. Tennery (Am. Ceram. Soc., Westerville, Ohio, 1989) p. 824.

    Google Scholar 

  65. G. Quinn andG. Wirth,Mater. Sci. Engng A109 (1989) 147.

    Google Scholar 

  66. T. Ohji,Int. J. High Tech. Ceram. 4 (1988) 211.

    Google Scholar 

  67. F. I. Baratta, G. D. Quinn andW. T. Matthews, “Errors Associated with Flexure Testing of Brittle Materials”, US Army MTL Technical Report, TR 87–35, July 1987.

  68. G. W. Hollenberg, G. R. Terwilliger andR. S. Gordon,J. Amer. Ceram. Soc. 54 (1971) 196.

    Google Scholar 

  69. P. K. Talty andR. A. Dirks,J. Mater. Sci. 13 (1978) 580.

    Google Scholar 

  70. E. J. Minford andR. E. Tressler,J. Amer. Ceram. Soc. 66 (1983) 338.

    Google Scholar 

  71. M. R. Foley andR. E. Tressler,Adv. Ceram. Mater. 3 (1981) 382.

    Google Scholar 

  72. G. D. Quinn andR. N. Katz,J. Amer. Ceram. Soc. 63 (1980) 117.

    Google Scholar 

  73. M. Matsui, Y. Ishida, T. Soma andI. Oda, in “Ceramic Materials and Components for Engines”, edited by W. Bunk and H. Hausner (Deutsche Keramische Gesselschaft, Berlin, 1986) p. 1043.

    Google Scholar 

  74. B. Pletka andS. Wiederhorn,J. Mater. Sci. 22 (1987) 1247.

    Google Scholar 

  75. G. D. Quinn,ibid. 22 (1987) 2309.

    Google Scholar 

  76. R. R. Baker, L. R. Swank andJ. C. Caverly, “Ceramic Life Prediction Methodology — Hot Spin Disc Life Program”, US Army Materials and Mechanics Research Center, Technical Report TR 83-44, August 1983.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, G.D. Fracture mechanism maps for advanced structural ceramics. J Mater Sci 25, 4361–4376 (1990). https://doi.org/10.1007/BF00581096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581096

Keywords

Navigation