Advertisement

Journal of Materials Science

, Volume 25, Issue 10, pp 4266–4272 | Cite as

Influence of oxygen contamination on the surface tension of liquid tin

  • A. Passerone
  • E. Ricci
  • R. Sangiorgi
Papers

Abstract

The surface tension of liquid tin has been measured by the sessile-drop technique as a function of temperature, in the range 232 ⩽T (°C) ⩽ 800 and under different atmospheres. It is shown that oxygen strongly affects the surface tension values and that, under “nominally” very clean conditions, a considerable scatter of experimental results occurs. This scatter can be explained by taking into account kinetic factors, especially those related to the gaseous fluxes around the molten drop. By this procedure, a number of experimental results can be singled out, which corresponds to “clean” surface conditions. On the basis of these results, the following expression for surface tension politherm is proposed: σ(mN m−1 = 581-0.13) (t-232).

Keywords

Oxygen Polymer Atmosphere Surface Tension Surface Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Keene,Int. Mater. Rev. 33 (1988) 1.Google Scholar
  2. 2.
    K. Ogino andH. Taimatsu,J. Jpn. Inst. Metals 43 (1979) 871.Google Scholar
  3. 3.
    K. Ogino, H. Taimatsu andF. Nakatani,ibid. 46 (1982) 957.Google Scholar
  4. 4.
    G. Bernard andC. H. Lupis,Metall. Trans. 2 (1971) 2991.Google Scholar
  5. 5.
    R. Sangiorgi, M. L. Muolo andA. Passerone,Acta Metall. 30 (1983) 1597.Google Scholar
  6. 6.
    H. Taimatsu, M. Abe, F. Nakatani andK. Ogino,J. Jpn. Inst. Metals 49 (1985) 523.Google Scholar
  7. 7.
    K. Monma andH. Suto,Trans. Jpn. Inst. Metals 2 (1961) 149.Google Scholar
  8. 8.
    T. E. O'Brien andC. D. Chaklader,J. Amer. Ceram. Soc. 57 (1974) 329.Google Scholar
  9. 9.
    Z. Morita andA. Kasama,J. Jpn. Inst. Metals 40 (1976) 787.Google Scholar
  10. 10.
    B. Gallois andC. H. Lupis,Metall Trans. B 12 (1981) 549.Google Scholar
  11. 11.
    A. Passerone, R. Sangiorgi andG. Caracciolo,J. Chem. Thermodyn. 15 (1983) 971.Google Scholar
  12. 12.
    D. H. Bradhurst andA. S. Buchanan,J. Phys. Chem. 63 (1959) 1486.Google Scholar
  13. 13.
    J. C. Hardy,J. Crystal Growth 69 (1984) 456.Google Scholar
  14. 14.
    Idem ibid,71 (1985) 602.Google Scholar
  15. 15.
    C. Garcia-Cordovilla, E. Louis andA. Pamies,J. Mater. Sci. 21 (1986) 2787.Google Scholar
  16. 16.
    E. Ricci, A. Passerone andJ. C. Joud,Surf. Sci. 206 (1988) 533.Google Scholar
  17. 17.
    O. Otzuka andZ. Kozuka,Trans. Jpn. Inst. Metals 22 (1981) 558.Google Scholar
  18. 18.
    L. Goumiri andJ. C. Joud,Acta metall. 30 (1982) 1397.Google Scholar
  19. 19.
    R. Sangiorgi, C. Senillou andJ. C. Joud,Surf. Sci. 202 (1988) 509.Google Scholar
  20. 20.
    M. J. Murtha andG. Burnet, in “An Annotated Bibliography for Liquid Metal Surface Tension of Groups 3A, 4A and 5A Metals”, IS 3829 Report, Ames Library, ERDA (Iowa State University, Ames 50011 Iowa, April 1976).Google Scholar
  21. 21.
    G. Lang,J. Inst. Metals 101 (1973) 300.Google Scholar
  22. 22.
    F. H. Howie andE. D. Hondros,J. Mater. Sci. 17 (1982) 143.Google Scholar
  23. 23.
    D. W. G. White,Metall. Trans. 2 (1971) 3067.Google Scholar
  24. 24.
    H. K. Abol Abdel-Aziz, M. B. Kirshah andA. M. Aref,Z. Metallkde. 66 (1975) 183.Google Scholar
  25. 25.
    J. A. Cahill andA. D. Kirshenbaum,J. Inorg. Nucl. Chem. 26 (1964) 206.Google Scholar
  26. 26.
    I. Lauermann, G. Metzger andF. Sauerwald,Z. Phys. Chem. (Leipzig) 216 (1961) 42.Google Scholar
  27. 27.
    K. Mukai, I. Kashiwagi andT. Takanori,Jpn Bull. Kyushu Technol. 26 (1973) 155.Google Scholar
  28. 28.
    Yu. V. Naidich, V. M. Perevertailo andV. S. Zhuravlev,Russ. J. Phys. Chem. 45 (1975) 556.Google Scholar
  29. 29.
    N. L. Pokrovskii andN. D. Galanina,Zh. Fiz. Khim. 23 (1949) 324.Google Scholar
  30. 30.
    N. L. Pokrovskii andD. S. Tissen,Proc. Akad. Nauk SSSR Phys. Chem. 128 (1959) 879.Google Scholar
  31. 31.
    Idem, Russ. J. Phys. Chem. 34 (1960) 592.Google Scholar
  32. 32.
    N. L. Pokrovskii andM. Saidov,Z. Fiz. Khim. 29 (1955) 1601.Google Scholar
  33. 33.
    N. L. Pokrovskii, P. P. Pugachevich andKh. I. Ibragimov,Sov. Phys. Dokl. 12 (1967) 170.Google Scholar
  34. 34.
    A. E. Schwaneke, W. L. Falke andV. L. Miller,J. Chem. Engng. Data. 23 (1978) 298.Google Scholar
  35. 35.
    L. L. Bircumshaw,Phil. Mag. 17 (1934) 181.Google Scholar
  36. 36.
    D. A. Melford andT. P. Hoar,J. Inst. Metals 85 (1957) 197.Google Scholar
  37. 37.
    Y. Matuyama,Sci. Rep. Tohoku Imp. Univ. 16 (1927) 555.Google Scholar
  38. 38.
    G. Drath andF. Sauerwald,Z. Anorg. Chem. 162 (1927) 301.Google Scholar
  39. 39.
    G. Lang, P. Laty, J. C. Joud andP. Desre,Z. Metallkde 67 (1977) 113.Google Scholar
  40. 40.
    S. I. Popel, I. N. Kozhorkov andT. V. Zakarova,Zashita Metallov. 7 (1971) 421.Google Scholar
  41. 41.
    T. P. Hoar andD. A. Melford,Trans. Faraday Soc. 53 (1957) 316.Google Scholar
  42. 42.
    T. Hogness,J. Amer. Soc. 43 (1921) 1621.Google Scholar
  43. 43.
    A. Adachi, Z. Morita, P. Kita, A. Kasama andS. Humamatsu,Tech. Rept. Osaka Univ. 22 (1972) 93.Google Scholar
  44. 44.
    F. L. Harding andD. R. Rossington,J. Amer. Ceram. Soc. 53 (1970) 87.Google Scholar
  45. 45.
    E. Pelzel,Berg. Huettemaenn Monatsh. 93 (1948) 248.Google Scholar
  46. 46.
    B. C. Allen andW. D. Kingery,Trans. Met. Soc. AIME 215 (1969) 30.Google Scholar
  47. 47.
    S. M. Kaufmann andT. J. Whalen,Acta Metall. 13 (1965) 797.Google Scholar
  48. 48.
    M. Demeri, M. Farag andJ. Heasley,J. Mater. Sci. 9 (1974) 683.Google Scholar
  49. 49.
    D. V. Atterton andT. P. Hoar,J. Inst. Metals 81 (1953) 541.Google Scholar
  50. 50.
    D. R. Sageman, PhD Thesis, Library Iowa State University, Ames, Iowa, 1976, unpublished.Google Scholar
  51. 51.
    J. F. Padday, in “Surface and Colloid Science”, edited by E. Matijevic Vol. 1 (Wiley-Interscience, New York, 1969) p. 101.Google Scholar
  52. 52.
    C. Maze andG. Burnet,Surf. Sci. 13 (1969) 451.Google Scholar
  53. 53.
    Idem, ibid. 24 (1971) 335.Google Scholar
  54. 54.
    K. Nogi, K. Ogino, A. Mclean andW. A. Miller,Metall. Trans. 17B (1986) 163.Google Scholar
  55. 55.
    C. Maze andG. Burnet,Surf. Sci. 27 (1971) 411.Google Scholar
  56. 56.
    O. Kubaschewsky andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon, Oxford, New York, 1979).Google Scholar
  57. 57.
    J. P. Coughlin,Bur. Mines Bull. 542 (1954) 1.Google Scholar
  58. 58.
    JANAF Thermochemical Tables (National Bureau of Standards, 1971) and supplement (1974).Google Scholar
  59. 59.
    P. Costa, A. Passerone andE. Ricci,High Temp. High Press. 20 (1988) 59.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • A. Passerone
    • 1
  • E. Ricci
    • 1
  • R. Sangiorgi
    • 1
  1. 1.Istituto di Chimica Fisica Applicata del MaterialiCNRGenovaItaly

Personalised recommendations