Pflügers Archiv

, Volume 414, Issue 2, pp 228–234 | Cite as

Oxygen supply of the blood-free perfused guinea-pig brain in normo- and hypothermia measured by the local distribution of oxygen pressure

  • H. Baumgärtl
  • U. Heinrich
  • D. W. Lübbers
Heart, Circulation, Respiration and Blood: Environmental and Exercise Physiology


The O2 supply of the blood-free perfused brain cortex of the guinea pig was investigated by measuring polarographically the local distribution of tissue\(P_{O_2 }\) at 18°C, 24°C, and 37°C. The perfusion was performed in situ, using a medium equilibrated by a gas mixture of 95% O2 and 5% CO2. Papaverine was added to prevent vasoconstriction during hypothermia. To avoid measuring artefacts thin micro electrodes with a small sharpened tip of ca. 4 μm in diameter were used and a special puncturing technique was applied. The experimental results indicate the presence of a large variation of local tissue\(P_{O_2 }\). Local mean\(P_{O_2 }\) increased up to a depth of 1000 μm, reached a plateau, and then decreased towards 3000 μm. This demonstrates that the O2 supply changes in dependence of the distance of the brain surface. This may partly becaused by the special vascularization pattern of the brain cortex. As it follows from the\(P_{O_2 }\) histograms, at 24°C the tissue layer between 0–2000 μm (layer I) was well supplied with oxygen, whereas at the same time the layer between 2001–3000 μm (layer II) was hypoxic. At 37°C, both layers were hypoxic, but layer III showed the more pronounced tissue hypoxia. To obtain a sufficient oxygen supply the temperature had to be reduced below 24°C to sufficiently decrease tissue O2 consumption: at 18°C, there was no sign of hypoxia any more. In comparison with the\(P_{O_2 }\) histogram of the tissue the\(P_{O_2 }\) histogram of the pial surface was shifted to higher\(P_{O_2 }\) values. The experiments show that in the blood-free perfused guinea-pig brain the\(P_{O_2 }\) histogram of the surface or of the upper tissue layer were not representative for the deeper layers. This has to be taken into account, when comparing results of tissue\(P_{O_2 }\) measurements with results of biochemical or photometric brain tissue investigations.

Key words

Brain cortex Blood-free perfusion \(P_{O_2 }\) needle electrodes Oxygen supply Hypothermia \(P_{O_2 }\) histogram of brain tissue \(P_{O_2 }\) histogram of pial surface Mean local tissue\(P_{O_2 }\) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bär T (1980) The vascular system of the cerebral cortex. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Baumgärtl H (1987) Systematic investigations of needle electrode properties in polarographic measurements of local tissue\(P_{O_2 }\). In: Ehrly AM, Hauss J, Huch R (eds) Clinical oxygen pressure measurement. Springer, Berlin Heidelberg New York, pp 17–42Google Scholar
  3. 3.
    Baumgärtl H, Lübbers DW (1983) Microcoaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue — its constructions and properties. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors: aquatic and physiological applications. Springer, Berlin Heidelberg New York, pp 37–65Google Scholar
  4. 4.
    Baumgärtl H, Grunewald W, Lübbers DW (1974) Polarographic determination of the oxygen partial pressure field by Pt microelectrodes using the O2 field in front of a Pt macroelectrode as a model. Pflügers Arch 347:49–61Google Scholar
  5. 5.
    Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. J Biol Chem 217:409–427Google Scholar
  6. 6.
    Crawford DW, Cole MA (1985) Performance evaluation of recessed microcathodes: criteria for tissue\(P_{O_2 }\) measurement. J Appl Physiol 58:1400–1405Google Scholar
  7. 7.
    Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579Google Scholar
  8. 8.
    Erdmann W, Vogel HR (1973) Sauerstoffversorgung des Gehirns. Deutsches Ärzteblatt 8:481–486Google Scholar
  9. 9.
    Grote J (1967) Die Sauerstoffdiffusionskonstanten im Lungengewebe und Wasser und ihre Temperaturabhängigkeit. Pflügers Arch 295:245–254Google Scholar
  10. 10.
    Grunewald W (1970) Diffusionsfehler und Eigenverbrauch der Pt-Elektrode bei\(P_{O_2 }\)-Messungen im steady state. Pflügers Arch 320:21–44Google Scholar
  11. 11.
    Hägerdahl M, Hoop JR, Siesjö BK (1975) The effect of induced hypothermia upon oxygen consumption in the rat brain. J Neurochem 24:311–316Google Scholar
  12. 12.
    Heidenreich J, Erdmann W, Metzger H, Thews G (1970) Local hydrogen clearance and\(P_{O_2 }\) measurements in micro area of the rat brain. Experientia 26:257–259Google Scholar
  13. 13.
    Heinrich U, Yu B, Hoffmann J, Lübbers DW (1984) The effect of glucose on the oxygen supply of the blood-free perfused guinea pig brain as measured by reflection spectra and\(P_{O_2 }\) histograms. Adv Exp Med Biol 169:261–269Google Scholar
  14. 14.
    Heinrich U, Hoffmann J, Baumgärtl H, Yu B, Lübbers DW (1985) Oxygen supply of the blood-free perfused guinea pig brain at three different temperatures. Adv Exp Med Biol 191:77–84Google Scholar
  15. 15.
    Heinrich U, Hoffmann J, Lübbers DW (1987) Quantitative evaluation of optical reflection spectra of blood-free perfused guinea pig brain using a nonlinear multicomponent analysis. Pflügers Arch 409:152–157Google Scholar
  16. 16.
    Knaust K (1967) Sauerstoffversorgung des hämoglobinfrei perfundierten Meerschweinchengehirns in vivo und in Hypothermie von 18°C. Dissertation, MarburgGoogle Scholar
  17. 17.
    Leichtweiss H-P, Lübbers DW, Weiss Ch, Baumgärtl H, Reschke W (1969) The oxygen supply of the rat kidney: Measurements of intrarenal\(P_{O_2 }\). Pflügers Arch 309:328–349Google Scholar
  18. 18.
    Lübbers DW (1966) Methods of measuring oxygen tensions of blood and organ surfaces. In: Payne JP, Hill DW (eds) Oxygen measurements in blood and tissues. Churchill Livingstone, Edinburgh London New York, pp 103–127Google Scholar
  19. 19.
    Lübbers DW (1966/67) Kritische Sauerstoffversorgung und Mikrozirkulation. Marburger Jahrbuch, Marburger Universitätsbund, pp 305–319Google Scholar
  20. 20.
    Lübbers DW (1969) Meaning of the tissue oxygen distribution curve and its measurement by means of Pt electrodes. Prog Resp Res 3:112–123Google Scholar
  21. 21.
    Metzger H, Heubner S (1977) Local oxygen tension and spike activity of the cerebral gray matter of the rat and its response to short intervals of O2 deficiency of CO2 excess. Pflügers Arch 370:201–209Google Scholar
  22. 22.
    Nair P, Whalen WJ, Buerk D (1975)\(P_{O_2 }\) of cat cerebral cortex: Response to breathing N2 and 100% O2. Microvasc Res 9:158–165Google Scholar
  23. 23.
    Opitz E, Schneider M (1950) Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Ergebn Physiol Biol Chem Exp Pharmacol 46:126–260Google Scholar
  24. 24.
    Roth AC, Wade K (1986) The effect of transmural transport in the microcirculation: A two gas species model. Microvasc Res 32:64–83Google Scholar
  25. 25.
    Schuchhardt S (1971) Die Sauerstoffdruckverteilung im hämoglobinfrei perfundierten Meerschweinchenherzen bei Ruhe und Tätigkeit. Pflügers Arch 322:131–151Google Scholar
  26. 26.
    Silver IA (1965) Some observations on the cerebral cortex with an ultramicro, membrane-covered oxygen electrode. Med Electron Biol Eng 3:377–387Google Scholar
  27. 27.
    Smith RH, Guilbeau EJ, Reneau DD (1977) The oxygen tension field within a discrete volume of cerebral cortex. Microvasc Res 13:233–240Google Scholar
  28. 28.
    Thews G (1960) Die Sauerstoffdiffusion im Gehirn. Ein Beitrag zur Frage der Sauerstoffversorgung der Organe. Pflügers Arch 271:197–226Google Scholar
  29. 29.
    Whalen WJ, Ganfield R, Nair P (1970) Effects of breathing O2 or O2+CO2 and of the injection of neurohumors on the\(P_{O_2 }\) of cat cerebral cortex. Stroke 1:194–200Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • H. Baumgärtl
    • 1
  • U. Heinrich
    • 1
  • D. W. Lübbers
    • 1
  1. 1.Max-Planck-Institut für SystemphysiologieDortmund 1Federal Republic of Germany

Personalised recommendations