Pflügers Archiv

, Volume 407, Issue 2, pp 145–152 | Cite as

Impairment of Na+ transport across frog skin by Tl+: Effects on turnover, area density and saturation kinetics of apical Na+ channels

  • W. Zeiske
  • W. Van Driessche
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


  1. 1.

    Na+ transport across abdominal skin of the frogs,Rana temporaria andRana esculenta was followed by measuring Na+-dependent short-circuit, current (INa) kinetics andINa fluctuations induced by triamterene, a diuretic.

  2. 2.

    Exposure of the skin to serosal Tl+ led to a pronounced and irreversible drop inINa andINa-blocker noise.

  3. 3.

    At low serosal Tl+ concentrations, we observed mainly a decrease in the apparent Michaelis constant forINa saturation while, at larger [Tl+], the maximalINa dropped irreversibly. Tl+ acts even when serosal Tl+ “transporters” like the Na+−K+ pump, or the K+ channel are nonfunctional.

  4. 4.

    The rate constants for the triamterene/Na+ channel reaction were unchanged after Tl+ whereas the relaxation noise from channel blockage decreased in amplitude. Noise analysis in terms of a two-state blocking model suggested that Tl+ poisoning results in a small decrease in singlechannel current through apical Na+ pathways, as well as in a drastic and irreversible drop in channel density.

  5. 5.

    The impairment of Na+ transport by Tl+ can be attributed to the above cited concerted events at the level of the apical membrane.


Key words

Frog skin Na+ transport Apical membrane Noise analysis Thallium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakker EP (1978) Accumulation of thalous ions (Tl+) as a measure of the electrical potential difference across the cytoplasmic membrane of bacteria. Biochemistry 17:2899–2904Google Scholar
  2. 2.
    Bakker-Grunwald T (1979) Movement of thallous ion across the ascites cell membrane. J Membr Biol 47:171–183Google Scholar
  3. 3.
    Coronado R, Rosenberg RL, Miller C (1980) Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum. J Gen Physiol 76:425–446Google Scholar
  4. 4.
    Crookes W (1961) On the existence of a new element, probably of the sulfur group. Chem News 3:193Google Scholar
  5. 5.
    Fuchs W, Hviid Larsen E, Lindemann B (1977) Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol 267:137–166Google Scholar
  6. 6.
    Giebisch G (1981) Problems of epithelial potassium transport: Special consideration of the nephron. Fed Proc 40:2395–2397Google Scholar
  7. 7.
    Gutknecht J (1983) Cadmium and thallous ion permeabilities through lipid bilayer membranes. Biochim Biophys Acta 735:185–188Google Scholar
  8. 8.
    Helman SI, Cox TC, Van Driessche W (1983) Hormonal control of apical membrane Na transport in eptihelia; studies with fluctuation analysis. J Gen Physiol 82:201–220Google Scholar
  9. 9.
    Helman SI, Fisher RS (1977) Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol 69:571–604Google Scholar
  10. 10.
    Hille B (1973) Potassium channels in myelinated nerve: Selective permeability to small cations. J Gen Physiol 61:669–686Google Scholar
  11. 11.
    Hillyard SD, Zeiske W, Van Driessche W (1982) A fluctuation analysis study of the development of amiloride-sensitive Na+ transport in the skin of larval bullfrogs (Rana catesbeiana). Biochim Biophys Acta 692:455–461Google Scholar
  12. 12.
    Hoshiko T, Van Driessche W (1981) Triamterene-induced sodium current fluctuations in frog skin. Arch Int Physiol Biochim 89:P58-P60Google Scholar
  13. 13.
    Kazantzis G (1979) Thallium. In: Friberg L et al. (eds) Handbook on the toxicology of metals. Elsevier, North Holland Biomed Press, pp 599–612Google Scholar
  14. 14.
    Landowne D (1975) A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid. J Physiol (Lond) 252:79–96Google Scholar
  15. 15.
    Li JHY, Lindemann B (1983) Competitive blocking of epithelial sodium channels by organic cations: the relationship between macroscopic and microscopic inhibition constants. J Membr Biol 76:235–251Google Scholar
  16. 16.
    Li JHY, Palmer LG, Edelmann IS, Lindemann B (1982) The role of sodium channel density on the natriferic response of the toad urinary bladder to an antidiuretic hormone. J Membr Biol 64:77–89Google Scholar
  17. 17.
    Lindemann B, Van Driessche W (1977) Sodium-specific membrane channels of frog skin are pores: current flucturations reveal high turnover. Science 195:292–294Google Scholar
  18. 18.
    Lindemann B, Van Driessche W (1978) The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin. In: Hoffman JF (ed) Membrane transport processes, vol 1. Raven Press, New York, pp 155–178Google Scholar
  19. 19.
    Lindemann B, Voûte C (1976) Structure and function of the epidermis. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 169–210Google Scholar
  20. 20.
    Loo DDF, Lewis SA, Ifshin MS, Diamond JM (1983) Turnover, membrane insertion, and degradation of sodium channels in rabbit urinary bladder. Science 221:1288–1290Google Scholar
  21. 21.
    Nagel W (1979) Inhibition of potassium conductance by barium in frog skin epithelium. Biochim Biophys Acta 552:346–357Google Scholar
  22. 22.
    Rabon EC, Sachs G (1981) Thallium interaction with the gastric (K,H)-ATPase. J Membr Biol 62:19–27Google Scholar
  23. 23.
    Skulskii IA, Manninen V, Jarnefelt J (1973) Interaction of thallous ions with the cation transport mechanism in erythrocytes. Biochim Biophys Acta 298:702–709Google Scholar
  24. 24.
    Ussing HH (1982) Volume regulation of frog skin epithelium. Acta Physiol Scand 114:363–369Google Scholar
  25. 25.
    Van Driessche W, Erlij D (1983) Noise analysis of inward and outward Na+ currents across the apical border of ouabaintreated frog skin. Pflügers Arch 398:179–188Google Scholar
  26. 26.
    Van Driessche W, Lindemann B (1979) Concentration dependence of currents through single sodium-selective pores in frog skin. Nature 282:519–520Google Scholar
  27. 27.
    Zeiske W (1978) The stimulation of Na+ uptake in frog skin by uranyl ions. Biochim Biophys Acta 509:218–229Google Scholar
  28. 28.
    Zeiske W (1979) Die Na+-Aufnahme durch die apikale Membran des Forschhautepithels. Ihr Mechanismus und ihre Steuerung durch Ionen und lipophile Substanzen (Ph D Thesis). Universität des Saarlandes, Saarbrücken, FRGGoogle Scholar
  29. 29.
    Zeiske W (1984a) Poisoning epithelial Na+ transport with Tl+ ions. Pflügers Arch 400:R27Google Scholar
  30. 30.
    Zeiske W (1984b) Irreversible block of Na+ transport in frog skin by Tl+ ions. Arch Int Physiol Biochim 92:p13-p14Google Scholar
  31. 31.
    Zeiske W, Lindemann B (1974) chemical stimulation of Na+ current through the outer surface of frog skin epithelium. Biochim Biophys Acta 352:323–326Google Scholar
  32. 32.
    Zeiske W, Van Driessche W (1979) Saturable K+ pathway across the outer border of frog skin (Rana temporaria): kinetics and inhibition by Cs+ and other cations. J Membr Biol 47:77–96Google Scholar
  33. 33.
    Zeiske W, Van Driessche W (1983) The interaction of “K+-like” cations with the apical K+ channel in frog skin. J Membr Biol 76:57–72Google Scholar
  34. 34.
    Zeiske W, Van Driessche W (1984a)I Na noise and Tl+ poisoning in frog skin. Pflügers Arch 402:R10Google Scholar
  35. 35.
    Zeiske W, Van Driessche W (1984b) The sensitivity of apical Na+ permeability in frog skin to hypertonic stress. Pflügers Arch 400:130–139Google Scholar
  36. 36.
    Zeiske W, Wills NK, Van Driessche W (1982) Na+ channels and amiloride-induced noise in the mammalian colon epithelium. Biochim Biophys Acta 688:201–210Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • W. Zeiske
    • 1
  • W. Van Driessche
    • 2
  1. 1.Institut für Tierphysiologie und Angewandte ZoologieFreie Universität BerlinBerlin 41
  2. 2.Laboratorium voor FysiologieLeuvenBelgium

Personalised recommendations