Skip to main content
Log in

Effect ofin vitro (ADP)ribosylation on transcription of the chromatin of the brain of developing rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The template-engaged RNA polymerase II was assayed in the nuclei purified from the cerebral hemisphere of 3-, 14- and 30-day old rats. Its activity is the highest at 3-day and declines as development proceeds. Lower transcription at 30-day may either be due to a decrease in the active fraction of chromatin or to a decrease in the amount of RNA polymerase II that is active towards endogenous template, or both. The activity of RNA polymerase I (active in low salt) is also maximal at 3-day and declines as development proceeds. (ADP)ribosylation of chromatin depresses RNA synthesis. This may be due to inactivation of RNA polymerase itself by protein poly(ADP)ribosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refences

  1. Yu F. L., 1974. Nature 251: 344–346.

    Google Scholar 

  2. Yu F. L., 1975. Biochim. Biophys. Acta 395: 329–336.

    Google Scholar 

  3. Reeder R. H. & Roeder R. G., 1972. J. Molec. Biol. 67: 433–441.

    Google Scholar 

  4. Weinmann R. & Roeder R. G., 1974. Proc. Natl. Acad. Sci. U.S.A. 71: 1790–1794.

    Google Scholar 

  5. TataJ. R. & Baker B., 1978. J. Mol. Biol 118: 249–272.

    Google Scholar 

  6. Berger N. A., Petzold S. J. & Berger S. J., 1979. Biochim. Biophys. Acta 564: 90–104.

    Google Scholar 

  7. Gray D. A., Durkacz B. W. & Shall S., 1981. FEBS Lett 121: 173–177.

    Google Scholar 

  8. Burzio L. & Koide S. S., 1970. Biochem. Biophys. Res. Commun. 40: 1013–1020.

    Google Scholar 

  9. Yoshihara K. & Koide S. S., 1973. FEBS Lett. 35: 262–264.

    Google Scholar 

  10. Muller W. E. G., Tetsuka A., Nusser I., Obermeir J., Rhode H. J. & Zahn R. K., 1974. Nucleic Acids Res. 1: 1317–1327.

    Google Scholar 

  11. Muller W. E. G. & Zahn R. K., 1976. Mol. Cell Biochem. 12: 147–159.

    Google Scholar 

  12. Caplan A. I. & Rosenberg N. J., 1975. Proc. Natl. Acad. Sci. U.S.A. 72: 1852–1857.

    Google Scholar 

  13. Supakar P. C. & Kanungo M. S., 1982. Biochem. Int. 5: 381–388.

    Google Scholar 

  14. Blobel G. & Potter V., 1966. Science 154: 1662–1665.

    Google Scholar 

  15. Panyim S., Bilek D. & Chalkley R., 1971. J. Biol. Chem. 246: 4206–4215.

    Google Scholar 

  16. Rickwood D., Riches P. G. & McGilvray A. I., 1973. Biochim. Biophys. Acta 299: 162–171.

    Google Scholar 

  17. Schwartz L. B., Sklar V. E. F., Jaehning J. A., Weenman R. & Roeder R. G., 1974. J. Biol. Chem. 249: 5889–5897.

    Google Scholar 

  18. Supakar P. C. & Kanungo M. S., 1984. Mol. Biol. Rep. 9: 253–257.

    Google Scholar 

  19. Sims J. L., Sikorski G. W., Catino D. M., Berger S. J. & Berger N. A., 1982. Biochemistry 21: 1813–1821.

    Google Scholar 

  20. Purnell N. R. & Whish W. J. D., 1980. Biochem. J. 135: 775–777.

    Google Scholar 

  21. Okayama H. & Hayaishi O., 1978. Biochem. Biophys. Res. Commun. 84: 755–762.

    Google Scholar 

  22. Ballal N. R. & Busch H., 1973. Cancer Res. 33: 2737–2743.

    Google Scholar 

  23. Jump D. B. & Smulson M., 1980. Biochemistry 19: 1024–1030.

    Google Scholar 

  24. Ogata N., Kawaichi M., Ueda K. & Hayaishi O., 1980. Biochem. Int. 1: 229–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, B.R., Kanungo, M.S. Effect ofin vitro (ADP)ribosylation on transcription of the chromatin of the brain of developing rats. Mol Biol Rep 12, 43–47 (1987). https://doi.org/10.1007/BF00580649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580649

Keywords

Navigation