Skip to main content
Log in

Biophysical studies of recognition sequences for targeting and folding

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akita M, Sasaki S, Matsuyama S & Mizushima S (1990) J. Biol. Chem. 265: 8164–8160

    Google Scholar 

  • Briggs MS, Gierasch LM, Zlotnick A, Lear J & DeGrado WF (1985)In vivo function and membrane binding properties are correlated forE. coli LamB signal peptides. Science 228: 1096–1097

    Google Scholar 

  • Bruch MD, Gierasch LM (1990) Comparison of helix stability in wildtype and mutant LamB signal sequences. J. Biol. Chem. 265: 3851–3858

    Google Scholar 

  • Brunch MD, McKnight CJ & Gierasch LM (1989) Helix formation and stability in a signal sequence. Biochemistry 28: 8554–8561

    Google Scholar 

  • Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX & Kiefhaber T (1990) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586–1591

    Google Scholar 

  • Bycroft M, Matouschek A, Kellis JTJr, Serrano L & Fersht AR (1990) Detection and characterization of a folding intermediate in barnase by NMR. Nature 346: 488–490

    Google Scholar 

  • Clore GM & Gronenborn AM (1982) Theory and applications of the transferred nuclear Overhauser effect to the study of the conformations of small ligands bound to proteins. J. Magn. Res. 48: 402–417

    Google Scholar 

  • Creighton TE (1990) Protein folding. Biochem. J. 270: 1–16

    Google Scholar 

  • Eilers M & Schatz G (1986) Binding of a specific ligand inhibits import of a purified precursor into mitochondria. Nature 322: 228–232

    Google Scholar 

  • Ellis RJ & van derVies SM (1991) Molecular chaperones. Ann. Rev. Biochem. 60: 321–347

    Google Scholar 

  • Emr SD & Silhavy TJ (1983) Importance of secondary structure in the signal sequence for protein secretion. Proc. Natl. Acad. Sci. USA 80: 4599–4603

    Google Scholar 

  • Fikes JD, Bassford PJJr (1989) Novel secA alleles improve export of maltose-binding protein synthesized with a defective signal peptide. J. Bacteriol. 171: 402–409

    Google Scholar 

  • Fischer G & Schmid FX (1990) The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry 29: 2205–2212

    Google Scholar 

  • Gierasch LM (1989) Signal sequences. Biochemistry 28: 923–930

    Google Scholar 

  • Goldstein J, Lehnhardt S & Inouye M (1990) Enhancement of protein translocation across the membrane by specific mutations in the hydrophobic region of the signal peptide. J. Bacteriol. 172: 1225–1231

    Google Scholar 

  • Goldstein J, Lehnhardt S & Inouye M (1991) Effect of asparagine in the hydrophobic region of the signal sequence. J. Biol. Chem. 266: 14413–14417

    Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA & Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342: 884–889

    Google Scholar 

  • Hoyt DW, (1991) Ph.D. dissertation, Univ. of Texas Southwestern Med. Centre

  • Hoyt DW & Gierasch LM (1991) A peptide corresponding to an export-defective mutant OmpA signal sequence with asparagine in the hydrophobic core is unable to insert into model membrane. J. Biol. Chem. 266: 14406–14412

    Google Scholar 

  • Hoyt DW & Gierasch LM (1992) Hydrophobic content and lipid interactions of wildtype and mutant OmpA signal peptides correlate with their in vivo function. Biochemistry (in press)

  • Jones JD, McKnight CJ & Gierasch LM (1990) Biophysical studies of signal peptides: imlications for signal sequence functions and the involvement of lipid in protein export. J. Bioener. Biomemb. 22: 213–232

    Google Scholar 

  • Kyte J & Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132

    Google Scholar 

  • Laminet AA, Ziegelhoffer T, Georgopoulos C & Plueckthun A (1990) TheEscherichia coli heat shock proteins GroEL and GroES modulate the folding of the β-lactamase precursor. EMBO J. 9: 2315–2319

    Google Scholar 

  • Landry SJ & Gierasch LM (1991) Recognition of nascent polypeptides for targeting and folding. TIBS 16: 159–163

    Google Scholar 

  • (1992) The chaperonin GroEL binds a polypeptide in an α-helical conformation. Biochemistry 30: 7359–7362

    Google Scholar 

  • (1992) Recognition of peptides by theE. coli molecular chaperones, GroEL and DnaK. In: Smith JA (Ed) Peptides: Chemistry, Structure, and Biology. ESCOM Science Publishers, Leiden, The Netherlands

    Google Scholar 

  • Lehnhardt S, Pollitt S & Inouye M (1987) The differential effect on two hybrid proteins of deletion mutations within the hydrophobic region of the Escherichia coli OmpA signal peptide. J. Biol. Chem. 262: 1716–1719

    Google Scholar 

  • Liu G, Topping TB & Randall LL (1989) Physiological role during export for the retardation of folding by the leader peptide of maltose-binding protein. Proc. Natl. Acad. Sci. USA 86: 9213–9217

    Google Scholar 

  • Martin J, Langer T, Boteva R, Schramel A, Horwich AL & Hartl F-U (1991) Chaperonin-mediated protein folding at the surface of groEL through a “molten globule”-like intermediate. Nature 352: 36–42

    Google Scholar 

  • Matouschek A, Kellis JTJr, Serrano L, Bycroft M, Fersht AR (1990) Transient folding intermediates characterized by protein engineering. Nature 346: 440–445

    Google Scholar 

  • McKnight CJ, Briggs MS & Gierasch LM (1989) Functional and nonfunctional LamB signal sequences can be distinguished by their biophysical properties. J. Biol. Chem. 264: 17293–17297

    Google Scholar 

  • McKnight CJ, Rafalski M & Gierasch LM (1991) Fluorescence analysis of tryptophan-containing variants of the LamB signal sequence upon insertion into a lipid bilayer. Biochemistry 30: 6241–6246

    Google Scholar 

  • McKnight CJ, Stradley SJ, Jones JD & Gierasch LM (1991) Conformational and membrane-binding properties of a signal sequence are largely unaltered by its adjacent mature region, Proc. Natl. Acad. Sci. USA 88: 5799–5803

    Google Scholar 

  • Mendoza JA, Rogers E, Lorimer GH & Horowitz PM, (1991) Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. Biol. Chem. 266: 13044–13049

    Google Scholar 

  • Neupert W, Hartl F-U, Craig EA, Pfanner N (1990) How do polypeptides cross the mitochrondrial membrane? Cell 63: 447–450

    Google Scholar 

  • Simons SM & Blobel G (1991) A protein-conducting channel in the endoplasmic reticulum. Cell 65: 371–380

    Google Scholar 

  • Skowyra D, Georgopoulos C & Zylicz M (1990) TheE. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62: 939–944

    Google Scholar 

  • Stader J, Benson SA & Silhavy TJ (1987) Kinetic analysis of lamB mutants suggests the signal sequence plays multiple roles in protein export. J. Biol. Chem. 261: 15075–15080

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gierasch, L.M., Jones, J.D., Landry, S.J. et al. Biophysical studies of recognition sequences for targeting and folding. Antonie van Leeuwenhoek 61, 93–99 (1992). https://doi.org/10.1007/BF00580613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580613

Key words

Navigation