Advertisement

Pflügers Archiv

, Volume 358, Issue 4, pp 303–310 | Cite as

Effects of unilateral nephrectomy on plasma renin substrate and renin concentration in rats

  • Tatsuo Kokubu
  • Kunio Hiwada
  • Yuichi Yamamura
Article

Summary

Effects of unilateral nephrectomy on plasma renin concentration and renin substrate (angiotensinogen) concentration were studied over an experimental period of 10 days in rats.

The maximum increase in plasma renin substrate concentration after bilateral nephrectomy was 9 times higher than the preoperative level. Very low but measureable plasma renin concentrations were found in rats nephrectomized bilaterally 24 hrs previously.

In unilateral nephrectomized rats the concentration of renin substrate in plasma increased maximumly 3.5-fold within 24 hrs after the operation and on the third day it was decreased to half of the maximum level. Even 10 days after uninephrectomy the concentration of plasma renin substrate was significantly higher than that of normal rats. Twenty four hours after unilateral nephrectomy plasma renin concentration decreased to similar low levels as those found in bilateral nephrectomized rats. The decreased concentration of plasma renin, however, returned to normal 3 days after uninephrectomy.

The inverse relationship was seen between the concentrations of plasma renin and plasma renin substrate. However, substrate concentration in plasma rised faster and longer than plasma renin decreased.

Key words

Unilateral Nephrectomy Bilateral Nephrectomy Plasma Renin Concentration Plasma Renin Substrate Concentration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, K., Minohara, A., Yamada, J., Uemura, N., nakamura, M.: Microdetermination of human plasma renin activity with the addition of homologous substrate. Clin. chim. Acta22, 309–315 (1968)Google Scholar
  2. Bing, J.: Relation between renin substrate and acute phase proteins. Acta path. microbiol. scand.80, 646–650 (1972)Google Scholar
  3. Bing, J., Poulsen, K.: Experimentally induced changes in plasma angiotensinogen and plasma renin. Acta path. microbiol. scand.77, 389–398 (1969)Google Scholar
  4. Bing, J., Poulsen, K.: Cause of increased plasma angiotensinogen after nephrectomy. Acta path. microbiol. scand.78, 669–673 (1970)Google Scholar
  5. Blanie, E. H., Davis, J. O., Baumber, J. S.: Plasma renin substrate changes in experimental uremia. Proc. Soc. exp. Biol. (N.Y.)136, 21–24 (1971)Google Scholar
  6. Blaquier, P.: Kinetic studies on renin-angiotensinogen reaction after nephrectomy. Amer. J. Physiol.208, 1083–1086 (1965)Google Scholar
  7. Boucher, R., Ménard, J., Genest, J.: A micromethod for measurement of renin in the plasma and kidney of rats. Canad. J. Physiol. Pharmacol.45, 881–890 (1967)Google Scholar
  8. Carretero, O., Gross, F.: Renin substrate in plasma under various experimental conditions in the rat. Amer. J. Physiol.213, 695–700 (1967a)Google Scholar
  9. Carretero, O., Gross, F.: Evidence for humoral factors participating in the reninsubstrate reaction. Circulat. Res.20–21 (Suppl. II), 115–126 (1967b)Google Scholar
  10. Dévényi, I., Dauda, G., Nemes, Z.: The role of the liver in angiotensinogen production. Acta physiol. Acad. Sci. hung.34, 43–46 (1968)Google Scholar
  11. Fasciolo, J. C.: Bradykininogen, angiotensinogen and kallidinogen. Brit. J. Pharmacol.21, 250–258 (1963)Google Scholar
  12. Freeman, R. H., Rostorfer, H. H.: Hepatic changes in renin substrate biosynthesis and alkaline phosphatase activity in the rat. Amer. J. Physiol.223, 364–370 (1972)Google Scholar
  13. Gornall, A. J., Bardawill, C. S., Davis, M. M.: Determination of serum proteins by means of the biuret reaction. J. biol. Chem.177, 751–766 (1949)Google Scholar
  14. Hasegawa, H., Tateishi, H., Masson, G. M. C.: Evidence for an angiotensinogen-stimulating factor after nephrectomy. Canad. J. Physiol. Pharmacol.51, 563–566 (1973)Google Scholar
  15. Helmer, O, M., Griffith, R. S.: The effect of the administration of estrogens on the renin-substrate (hypertensinogen) content of rat plasma. Endocrinology51, 421–426 (1952)Google Scholar
  16. Hirasawa, K., Yamamoto, H., Matsui, A., Shinozaki, K., Kobayashi, S., Yagi, Y., Morimoto, S., Takeda, R., Murakami, M.: The effect of mercuric chloride, of bilateral ureteral ligation and of bilateral nephrectomy on plasma renin substrate concentration in rats. Jap. Circulat. J.32, 1591–1595 (1968)Google Scholar
  17. Hiwada, K., Ito, T., Kokubu, T., Yamamura, Y.: Effects of exogenous renin and sodium load on renin activity in unilaterally nephrectomized rats. Pflügers Arch.342, 105–110 (1973)Google Scholar
  18. Kokubu, T., Hiwada, K., Nagasaka, Y., Yamamura, Y.: Effect of several proteinase inhibitors on renin reaction. Jap. Circulat. J.38, 955–958 (1974)Google Scholar
  19. Kokubu, T., Hiwada, K., Yamamura, Y., Hayashi, K., Okumura, J., Hori, M., Kobayashi, S., Ueno, H.: Isolation and identification of a renin inhibitor from ox bile. Biochem. Pharmacol.21, 209–217 (1972)Google Scholar
  20. Lazar, J., Hoobler, S. W.: Studies on the role of the adrenal in renin kinetics. Proc. Soc. exp. Biol. (N.Y.)138, 614–618 (1971)Google Scholar
  21. Montague, D.: Kinetics of renin-angiotensinogen reaction in plasma of normal and nephrectomized rats. Amer. J. Physiol.215, 78–83 (1968)Google Scholar
  22. Nasjletti, A., Masson, G. M. C.: Effects of corticoids on plasma angotensinogen and renin activity. Amer. J. Physiol.217, 1396–1400 (1969)Google Scholar
  23. Nasjletti, A., Masson, G. M. C.: Hepatic origin of renin substrate. Canad. J. Physiol. Pharmacol.49, 931–932 (1971)Google Scholar
  24. Nasjletti, A., Masson, G. M. C.: Studies on angiotensinogen formation in a liver perfusion system. Circulat. Res.30–31 (Suppl. II), 187–198 (1972)Google Scholar
  25. Nasjletti, A., Matsunaga, M., Masson, G. M. C.: Effects of estrogens on plasma angotensinogen and renin activity in nephrectomized rats. Endocrinology85, 967–970 (1969)Google Scholar
  26. Newton, M. A., Sealey, J. E., Ledingham, J. G. C., Laragh, J. H.: High blood pressure and oral contraceptives. Amer. J. Obstet. Gynec.101, 1037–1045 (1968)Google Scholar
  27. Page, I. H., McSwain, B., Knapp, G. M., Andrus, W. D.: The origin of renin-activator. Amer. J. Physiol.135, 214–222 (1941)Google Scholar
  28. Romero, J. C., Hoobler, S. W.: Changes in renin kinetics induced by nephrectomy. Amer. J. Physiol.223, 1075–1080 (1972)Google Scholar
  29. Sen, S., Hirasawa, K., Smeby, R. R., Bumpus, F. M.: Measurement of plasma renin substrate using homologous and heterogous renin. Amer. J. Physiol.221, 1476–1480 (1971)Google Scholar
  30. Sen, S., Smeby, R. R., Bjmpus, F. M.: Isolation of a phospholipid renin inhibitor from kidney. Biochemistry6, 1572–1581 (1967)Google Scholar
  31. Tateishi, H., Nasjletti, A., Masson, G. M. C.: Role of renin in the regulation of angiotensinogen levels in plasma. Proc. Soc. exp. Biol. (N.Y.)137, 1424–1428 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Tatsuo Kokubu
    • 1
  • Kunio Hiwada
    • 1
  • Yuichi Yamamura
    • 1
    • 2
  1. 1.The Second Department of Internal MedicineEhime University School of MedicineOnsen-gun EhimeJapan
  2. 2.The Third Department of Internal MedicineOsaka University School of MedicineFukushima, OsakaJapan

Personalised recommendations