Chemistry of Natural Compounds

, Volume 18, Issue 3, pp 322–327 | Cite as

Improved methods of obtaining Nim-trityl-substituted histidine derivatives

  • V. F. Pozdnev
Article
  • 234 Downloads

Abstract

Two variants are proposed for the synthesis of Nα-Boc-Nim-tritylhistidiine. The first variant starts from Nα,Nim-di-Boc-histidine, from which the Nim-Boc group is removed with hydrazine hydrate. The Nα-Boc-histidine formed is esterified with chlorotrimethylsilane, tritylated in the imidazole group, and, after the elimination of the trimethylsilyl protection from the carboxyl group, Nα-Boc-Nim-tritylglycine is obtained with a yield of 80%. The second variant starts from Nα,Nim-ditritylhistidine, which, by treatment with hydrochloric acid in acetone and then with dilute ammonia, is converted into Nim-tritylhistidine. From this, by acylation with di-tert-butyl pyrocarbonate, Nα-Boc-Nim-tritylhistidine is obtained with a yield of 91%. The acylation of Nim-tritylhistidine with other alkoxycarbonylating reagents leads to Nα-tert-amyl-, Nα-benzyl-, and Nα-4-methoxybenzyloxycarbonyl derivatives of Nim-tritylhistidine.

Keywords

Hydrazine Hydrate Carboxy Group Purine Nucleoside Citric Acid Solution Trityl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. Schroeder and K. Lübke, The Peptides, Academic Press, New York (1965).Google Scholar
  2. 2.
    C. Amiard, P. Heymes, and L. Velluz, Bull. Soc. Chim. Fr., 191 (1955).Google Scholar
  3. 3.
    C. Amiard, R. Heymes, and L. Velluz, Bull. Soc. Chim. Fr., 1464 (1955).Google Scholar
  4. 4.
    R. A. Boissonas, S. Guttmann, R. L. Huguenin, R. A. Yaquenond, and E. Sandrin, Helv. Chim. Acta.,41, 1867 (1958).CrossRefGoogle Scholar
  5. 5.
    G. S. Stelatakos, D. M. Theodoropoulos, and L. Zervas, J. Am. Chem. Soc.,81, 2884 (1959).CrossRefGoogle Scholar
  6. 6.
    G. Losse and G. Muller, Chem. Ber.,94, 2768 (1961).CrossRefGoogle Scholar
  7. 7.
    H. R. Bosshard, Helv. Chim. Acta,54, 951 (1971).CrossRefGoogle Scholar
  8. 8.
    G. Losse and U. Krychowsky, J. Prakt. Chem.,312, 1097 (1971).CrossRefGoogle Scholar
  9. 9.
    P. Hatter, Z. Physiol. Chem.,358, 331 (1977).CrossRefGoogle Scholar
  10. 10.
    P. Hartter, Z. Physiol. Chem.,357, 1683 (1976).CrossRefGoogle Scholar
  11. 11.
    G. Losse and K. J. Schumacher, Tetrahedron,33, 1519 (1977).CrossRefGoogle Scholar
  12. 12.
    G. Losse and U. Krychowsky, Tetrahedron Lett., 4121 (1971).Google Scholar
  13. 13.
    O. D. Batenburg and E. T. Kerling, Int. J. Peptide Protein Res.,8, 1 (1976).CrossRefGoogle Scholar
  14. 14.
    V. F. Pozdnev, Zh. Obsh. Khim.,50, 2385 (1980).Google Scholar
  15. 15.
    V. F. Pozdnev, Khim. Prirodn. Soedin., 379 (1980).Google Scholar
  16. 16.
    E. Schnabel, H. Herzog, P. Hoffman, E. Klauke, and I. Ugi, Ann. Chem.,716, 175 (1968).CrossRefGoogle Scholar
  17. 17.
    V. F. Pozdnev, Zh. Org. Khim.,13, 2531 (1977).Google Scholar
  18. 18.
    V. F. Pozdnev, Khim. Prir. Soedin., 764 (1974).Google Scholar
  19. 19.
    V. F. Pozdnev, E. A. Smirnova, N. N. Podgornova, N. K. Zentsova, and U. O. Kalei, Zh. Org. Khim.,15, 106 (1979).Google Scholar
  20. 20.
    V. F. Pozdnev, Bioorg. Khim.,3, 1605 (1977).Google Scholar
  21. 21.
    V. F. Pozdnev, N. N. Podgornova, N. K. Zentsova, G. I. Aukone, and U. O. Kalei, Khim. Prir. Soedin., 543 (1979).Google Scholar
  22. 22.
    V. F. Pozdnev, Bioorg. Khim.,4, 1273 (1978).Google Scholar
  23. 23.
    F. Weygand and K. Hunger, Chem. Ber.,95, 1 (1962).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • V. F. Pozdnev

There are no affiliations available

Personalised recommendations