Advertisement

Pflügers Archiv

, Volume 354, Issue 2, pp 187–195 | Cite as

Dependence of 2,3-DPG and oxygen affinity of haemoglobin on sex and pregnancy in the guinea-pig

  • Claudie Merlet-Bénichou
  • Esther Azoulay
  • Martine Muffat-Joly
Article

Summary

Oxygen half-saturation of blood (P50), 2,3-diphosphoglycerate concentration (2,3-DPG) and Bohr effect were determined in male, and nonpregnant and pregnant female guinea pigs, according to a randomized block design.

P50 was significantly higher in the female group (26.3 Torr±0.22 SEM) than in the male group (24.8 Torr±0.26 SEM) and was significantly lower in both these groups than in the pregnant group (27 Torr±0.35 SEM). This difference in oxygen affinity was explained by differences in 2,3-DPG: 1.08±0.02 SEM in males, 1.24±0.03 in non-pregnant females and 1.34±0.03 mol/mol Hb in pregnant females.P50, 2,3-DPG and haemoglobin concentrations were significantly correlated for the ensemble of the 3 groups. There was no significant difference in Bohr effect between the 3 groups.

Key words

Oxygen Affinity of Haemoglobin 2,3-DPG Bohr Effect Sex Differences Pregnancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artuson, G., Robert, M.: Oxygen affinity of whole blood in normal human subjects. Acta anaesth. scand., Suppl. XLV, 22–25 (1971)Google Scholar
  2. 2.
    Bartels, H.: Prenatal respiration, pp. 69–113, A. Neuberger and E. L. Tatum, eds. Amsterdam-London: North-Holland Publ. Comp. 1970Google Scholar
  3. 3.
    Bauer, Ch., Ludwig, M., Ludwig, I., Bartels, H.: Factors governing the oxygen affinity of human adult and foetal blood. Respir. Physiol.7, 271–277 (1969)Google Scholar
  4. 4.
    Cartier, P., Leroux, J. P., Temkine, H.: Techniques de dosage des intermédiaires de la glycolyse dans les tissus. Ann. Biol. Clin.25, 791–813 (1967)Google Scholar
  5. 5.
    Cartier, P., Temkine, H.: Le 2,3-diphosphoglycérate et le glucose 1,6 diphosphate du globule rouge. Technique de dosage. Ann. Biol. clin.25, 1119–1128 (1967)Google Scholar
  6. 6.
    Darling, R. C., Smith, C. A., Asmussen, E., Cohen, F. M.: Some properties of human fetal and maternal blood. J. clin. Invest.20, 739–747 (1941)Google Scholar
  7. 7.
    El Yassin, D. J.: Some studies on the oxygen dissociation curves of maternal and foetal blood and the change of their position during pregnancy. Thesis University of Baghdad, Iraq. 1965Google Scholar
  8. 8.
    Gahlenbeck, H., Frerking, H., Rathschlag-Schaefer, A. M., Bartels, H.: Oxygen and dioxide exchange across the cow placenta during the second part of pregnancy. Respir. Physiol.4, 119–131 (1968)Google Scholar
  9. 9.
    Hellegers, A. E., Meschia, G., Prystowsky, H., Wolkoff, A. S., Barron, D. H.: A comparison of the oxygen dissociation curves of the bloods of maternal and fetal goats at various pH's. Quart. J. exp. Physiol.44, 215–221 (1959)Google Scholar
  10. 10.
    Hellegers, A. E., Schruefer, J. J. P.: Nomograms and empirical equations relating oxygen tension, percentage saturation, and pH in maternal and foetal blood. Amer. J. Obstet. Gynec.81, 378–384 (1961)Google Scholar
  11. 11.
    Humpeler, E., Amor, H.: Sex differences in the oxygen affinity of hemoglobin. Pflügers Arch.343, 151–156 (1973)Google Scholar
  12. 12.
    International Comittee for Standardization in Haematology: Recommendations for haemoglobinometry in human blood. Brit. J. Haemat.13, Suppl., 71–75 (1967)Google Scholar
  13. 13.
    Leibson, R. G., Likhnitzki, I. I., Sax, M. G.: Oxygen transport of the foetal and maternal blood during pregnancy. J. Physiol. (Lond.)87, 97–112 (1936)Google Scholar
  14. 14.
    Lucius, H., Gahlenbeck, H., Kleine, H. O., Fabel, H., Bartels, H.: Respiratory functions, buffer system, and electrolyte concentrations of blood during human pregnancy. Respir. Physiol.9, 311–317 (1970)Google Scholar
  15. 15.
    Prystowsky, H., Hellegers, A., Brun, P.: Fetal blood studies XIV: A comparative study of the oxygen dissociation curve of non pregnant, pregnant and fetal human blood. Amer. J. Obstet. Gynec.78, 489–493 (1959)Google Scholar
  16. 16.
    Schaefer, K. E., Messier, A. A., Morgan, C. C.: Displacement of oxygen dissociation curves and red cell cation exchange in chronic hypercapnia. Respir. Physiol.10, 299–312 (1970)Google Scholar
  17. 17.
    Sinet, M., Azoulay, E., Blayo, M. C.: Affinité du sang pour l'oxygène et 2,3-DPG chez l'homme, la femme et la femme enceinte. Bull. Physio-Path. Resp.10, 419–434 (1974)Google Scholar
  18. 18.
    Sinet, M., Merlet, C., Joubin, C., Blayo, M. C.: Méthode coulométrique de mesure du contenu en oxygène sanguin. Validation par comparaison avec la méthode manométrique de Van Slyke. Rev. europ. Études Clin. biol.18, 1007–1010 (1972)Google Scholar
  19. 19.
    Riegel, K., Bartels, H.: Physiologische und pathologische Funktionsänderungen des Blutgastransportes beim Menschen. Beitr. Silikose-Forsch.5, 367–388 (1963)Google Scholar
  20. 20.
    Rørth, M., Bille Brahe, N. E.: 2,3-diphosphoglycerate and creatinine in the red cell during human pregnancy. Scand. J. clin. Lab. Invest.28, 271–276 (1971)Google Scholar
  21. 21.
    Rørth, M., Bille Brahe, N. E.: 2,3-DPG in human pregnancy. In: Alfred Benzon Symposium IV: Oxygen affinity of hemoglobin and red cell acid base status, eds. M. Rørth and P. Astrup, pp. 692–695. Copenhagen: Munksgaard 1972Google Scholar
  22. 22.
    Torrance, J., Jacobs, P., Restrepo, A., Eschenbach, J., Lenfant, C., Finch, O. A.: Intraerythrocytic adaptation to anemia. New Engl. J. Med.283, 165–169 (1970)Google Scholar
  23. 23.
    Wulf, H., Glasenapp, H., Vogel, H. R., Fischer, W. M.: Individuelle Sauerstoff-Bindungskurven von Nichtschwangeren-, Schwangeren-und Neugeborenenblut. Z. Geburtsh. Gynäk.165, 252–267 (1966)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Claudie Merlet-Bénichou
    • 1
  • Esther Azoulay
    • 1
  • Martine Muffat-Joly
    • 1
  1. 1.Unité de Recherches de RéanimationINSERMParisFrance

Personalised recommendations