Derepression and partial insensitivity to carbon catabolite repression of the methanol dissimilating enzymes inHansenula polymorpha

  • L. Eggeling
  • H. Sahm
Industrial Microbiology


The regulation of the synthesis of alcohol oxidase, catalase, formaldehyde dehydrogenase, and formate dehydrogenase was investigated in the methanol-utilizing yeastHansenula polymorpha during growth on different carbon and energy sources. When cells were grown on glucose, the enzymes of the dissimilatory methanol metabolism were not detected during the exponential phase of growth, but were formed in the late stationary phase without addition of methanol. Moreover, the enzymes were synthesized during growth on sorbitol, glycerol, ribose, and xylose. It was shown that the carbon catabolite insensitivity of the synthesis of methanol-specific enzymes is not limited to substrates that are slowly metabolized.


Enzyme Methanol Formaldehyde Glycerol Stationary Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bensadoun, A., Weinstein, D. (1976). Anal. Biochem.70, 241–250Google Scholar
  2. Van Dijken, J.P., Veenhuis, M., Vermeulen, C.A., Harder, W. (1975a). Arch. Microbiol.105, 261–267Google Scholar
  3. Van Dijken, J.P., Veenhuis, M., Kreger-van Rij, N.J.W., Harder, W. (1975b). Arch. Microbiol.102, 41–44Google Scholar
  4. Van Dijken, J.P., Otto, R., Harder, W. (1976). Arch. Microbiol.111, 137–144Google Scholar
  5. Fukui, S., Tanaka, A., Kawamoto, S., Yasuhara, S., Teranishi, S., Osumi, M. (1975). J. Bacteriol.123, 317–328Google Scholar
  6. Kato, N., Tani, Y., Ogata, K. (1973). Agr. Biol. Chem.38, 675–677Google Scholar
  7. Kesler, R.B., (1967). Analyt. Chem.39, 1416–1420Google Scholar
  8. Leupold, U. (1970). Methods in Cell. Physiol.4, 169–177Google Scholar
  9. Lowry, O.H., Rosebrough, N.J., Farr, J.G., Randall, R.J.(1951). J. Biol. Chem.193, 265–275Google Scholar
  10. Metzenberg, R.L. (1972). Ann. Rev. Genetics6, 111–132Google Scholar
  11. Polakis, E.S., Bartley, W. (1965). Biochem. J.97, 284–297Google Scholar
  12. Roggenkamp, R., Sahm, H., Wagner, F. (1974). FEBS Lett.41, 283–286Google Scholar
  13. Roggenkamp, R., Sahm, H., Hinkelmann, W., Wagner, F. (1975). Eur. J. Biochem.59, 231–236Google Scholar
  14. Sahm, H., Wagner, F. (1973a). Arch. Microbiol.90, 263–268Google Scholar
  15. Sahm, H., Wagner, F. (1973b). Eur. J. Biochem.36, 250–256Google Scholar
  16. Sahm, H., Roggenkamp, R., Hinkelmann, W., Wagner, F. (1975). J. Gen. Microbiol.88, 218–222Google Scholar
  17. Sahm, H. (1977). Adv. Biochem. Eng.6, 77–103Google Scholar
  18. Schlanderer, G., Dellweg, H. (1974). Eur. J. Biochem.49, 305–316Google Scholar
  19. Schütte, H., Flossdorf, J., Sahm, H., Kula, M.-R. (1976). Eur. J. Biochem.62, 151–160Google Scholar
  20. Stanier, R.Y., Duodoroff, M., Adelberg, E.A. (1976). General Microbiology. London and Basingstoke: Macmillan Student EditionsGoogle Scholar
  21. Tani, Y., Miya, T., Nishikawa, H., Ogata, K. (1972). Agr. Biol. Chem.36, 68–74Google Scholar
  22. Veenhuis, M., van Dijken, J.P., Harder, W. (1976). Arch. Microbiol.111, 123–135Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • L. Eggeling
    • 1
  • H. Sahm
    • 1
  1. 1.Institut für Biotechnologie der Kernforschungsanlage Jülich GmbHJülichGermany

Personalised recommendations