Advertisement

Experimental data regarding macroporous biphasic calcium phosphate ceramics

  • N. Passuti
  • J. Delécrin
  • G. Daculsi
Article

Summary

Macroporous biphasic calcium phosphate ceramics are biocompatible. Their physico-chemical structure is close to the mineral phase of the bone and provides bioactivity. Shortly after implantation in osseous area, dissolution appears with precipitation and formation of apatite crystals. Soon after osteoclastic resorption begins osteoconduction inside the macropores. Mechanical studies reveal a significant improvement in the mechanical properties due to the growth of the trabecular bone. Animal experiments in the spine have demonstrated bone penetration which allows a postero-lateral fusion. The rigidity of the fusion is equivalent to that obtained with bone graft. Macroporous biphasic calcium phosphate can be applied to fill bone defects and for postero-lateral spine fusion.

Key words

Biomaterial Calciumphosphate ceramics Osteoconduction Resorption Mechanical strength 

Données expérimentales concernant les céramiques macroporeuses biphasées en phosphates de calcium

Résumé

Les céramiques macroporeuses biphasées de phosphate de calcium sont biocompatibles. Leurs structures physico-chimiques sont proches de la phase minérale des tissus osseux et dentaires et assurent leur bioactivité. Très rapidement, aprè implantation en site osseux, une dissolution apparaît avec précipitation d'ions calcium et phosphore et formation de cristaux d'apatites biologiques. A court terme une résorption ostéoclastique débute l'ostéoconduction à l'intérieur des macropores.

Les études mécaniques révèlent une amélioration significative des propriétés mécaniques du fait du développement de l'os trabéculaire.

En site vertébral, les expérimentations animales ont démontré la cinétique de la réhabitation osseuse au sein du matériau, ce qui permet une arthrodèse postéro-latérale. La rigidité de la fusion intervertébrale est équivalente à celle obtenue avec de l'os autologue.

Ainsi, pour des conditions précises d'utilisation, les céramiques poreuses de phosphate de calcium peuvent être utilisées pour combler le défect osseux et pour la réalisation d'arthrodéses postéro-latérales.

Mots-clés

Biomatériau Céramiques de phosphate de calcium Résorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basle MF, Chappard D, Grizon FZ, Filmon R, Delécrin J, Rebel A (1993) Osteoclastic resorption of Ca-P biomaterials implanted in rabbit bone. Calcif Tissue Int 53: 348–356Google Scholar
  2. 2.
    Burwell RG (1985) The function of bone marrow in the incorporation of a bone graft. Clin Orthop 200:125–141Google Scholar
  3. 3.
    Cockin J (1971) Autologous bone graftingcomplications at donor site. J Bone Joint Surg [Br] 53-B:153Google Scholar
  4. 4.
    Daculsi G, Passuti N, Martin S, Le Nihouanen JC, Brulliard V, Delécrin J (1989) A comparative study of bioactive calcium phosphate ceramics after implantation in cancellous bone in the dog. Rev Chir Orthop 75: 65–71Google Scholar
  5. 5.
    Daculsi G, Legeros RZ, Heughebaert M, Barbieux I (1990) Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 46: 20–27Google Scholar
  6. 6.
    Daculsi G, Passuti N (1990) Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11:86–88Google Scholar
  7. 7.
    Daculsi G Passuti N, Martin S, Deudon C, Legeros RZ, Raher S (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24: 379–396Google Scholar
  8. 8.
    Daculsi G, Corlieu P, Bagot D'arc Maurice, Gersdorff M (1992) Macroporous biphasic calcium phosphate efficiency in mastoid cavity obliteration: experimental and clinical findings. Ann Oto Rhin Laryng 101: 669–674Google Scholar
  9. 9.
    Flattey TJ, Lynch KL, Benson M, (1983) Tissues responses to implants of calcium phosphate ceramic in the rabbit spine. Clin Orthop, pp 179–246Google Scholar
  10. 10.
    Frayssinet P, Trouillet JL, Rouquet N, Autefage A, Delga C, Conte P (1993) Calcium phosphate porous ceramics osseointegration: the importance of a good definition of material specifications. ter Congrês Européen d'Orthopedie, Paris, 21–23 Avril. Rev Chir Orthop 79, Abstract no 402Google Scholar
  11. 11.
    Gründel RE, Chapman MW, Yee T, Moore DC (1991) Autogeneic bone marrow and porous biphasic calcium phophate ceramic for segmental bone defect in the canine ulna. Clin Orthop 266:244–258Google Scholar
  12. 12.
    Hoofendoorn HA, Renooij W, Addermans LMA, Visser W, Wittibol P (1984) Long-term study 0f large ceramic implants (Porous hydroxyapatite) in dog femora. Clin Orthop 187:281–288Google Scholar
  13. 13.
    Jarcho M (1981) Calcium Phosphate ceramics as hard tissue prosthetics. Clin Orthop 157: 259–278Google Scholar
  14. 14.
    Klein CPAT, Driessen AA, De Groot K, Van Den Hoof A (1983) Biodegradatin behavior 0f various calcium phosphate materials in bone tissue. J Biomed Mater Res 17:769–784Google Scholar
  15. 15.
    Laurie SWS, Kahan LB, Mulliken JB, Murray JE (1984) Donor-site morbidity after harvesting rib and iliac bone. Plast Reconstr Surg 73: 933–938Google Scholar
  16. 16.
    Legeros RZ (1988) Calcium phosphate materials in restorative dentistry. A review. Adv Dent Res 2:164–180Google Scholar
  17. 17.
    Nery EB, Legeros RZ, Lynch KL, Lee K (1992) Tissue respons t0 biphasic calcium phosphate ceramic with different ratios 0f HA/ßTCP in periodontal osseous defects. J Periodontol 63: 729–35Google Scholar
  18. 18.
    Ohgushi H, Goldberg VM, Caplan AI (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Ortop Res 7: 568–578Google Scholar
  19. 19.
    Palley D, Young MC, Wiley AM, Fornasier, VL, Jackson RW (1986) Percutaneous bone marrow grafting 0f fractures and bony defects. Clin Orthop 208:300–312Google Scholar
  20. 20.
    Passuti N Daculsi G, Rogez JM, Martin S, Bainvel JV (1989) Macroporous calcium phophate ceramic performance in human spine fusion. Clin Orthop 248:169–176Google Scholar
  21. 21.
    Summers BN, Eisenstein SM (1989) Donor site pain from the ilium. A complication 0f lumbar spine fusion. J Bone Joint Surg f [Br] 71-B:677–679Google Scholar
  22. 22.
    Takagi K, Urist MR (1982) The role of bone marrow in bone morphogenetic proteininduced repair of femoral massive diaphyseal defects. Clin Othop 171:226–231Google Scholar
  23. 23.
    Trecant M, Delécrin J, Royer J, Daculsi G (1994) Mechanical changes in macroporous calcium phosphate ceramics after implantation in bone. Clin Mater 15: 233–240Google Scholar
  24. 24.
    Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K (1990) The use 0f calcium hydroxyapatite ceramic in bone tumor surgery. J Bone Joint Surg [Br] 72:298–302Google Scholar
  25. 25.
    Van Blitterswijk CA, Grote JJ, Kuijpers W, Daems WTh, De Groot K (1986) Macropore tissue ingrowth: a quantitative and qualitative study 0n hydroxyapatite ceramics. Biomaterials 7:137–143Google Scholar
  26. 26.
    Winter M, Griss P, De Groot K, Taga H, Heimke G, Von Digh HJA, Sawai K (1981) Comparative histocompatibility testing 0f seven calcium phosphate ceramics. Biomaterials 2:159–161Google Scholar
  27. 27.
    Zheng QX, Zhu TB, Du JY, Hong GX, Li SP, Yan YH, Zhang ED (1992) Artificial bone 0f porous tricalcium phosphate ceramics and its preliminary clinical application. J Tongji Med Univ 12:173–179Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • N. Passuti
    • 1
  • J. Delécrin
    • 1
  • G. Daculsi
    • 1
  1. 1.Laboratoire de Recherche Biomatériaux-Tissus CalcifiésFaculté de Chirurgie Dentaire, Université de NantesNantes Cedex 01France

Personalised recommendations