Optical and Quantum Electronics

, Volume 28, Issue 1, pp 25–42 | Cite as

Dynamic holography with nonplane waves in sillenites

  • E. Shamonina
  • M. Mann
  • K. H. Ringhofer
  • A. Kiessling
  • R. Kowarschik
Papers

Abstract

A three-dimensional model describing two-wave mixing in photorefractive crystals with finite beams of arbitrary shape is presented. The well-known longitudinal and transverse geometries are generalized by allowing an arbitrary orientation of the local grating vector. The coupled equations for the wave amplitudes are solved numerically in the small-angle approximation by introducing the light paths as characteristics. The influence of amplitude distributions and phase-front curvatures as well as the influence of geometrical arrangements and crystal properties (i.e. optical activity, externally applied voltage) on the energy exchange and the evolution of the polarization states is investigated. It is demonstrated that scanning the cross-section of the finite signal beam behind the crystal allows analysis of the coupling process inside the crystal which cannot be studied directly. The results of experiments with finite beams carried out on a BSO crystal are in good agreement with the numerical calculations.

Keywords

Polarization State Wave Amplitude Optical Activity Amplitude Distribution Arbitrary Shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. P. PETROV, S. I. STEPANOV and A. V. KHOMENKO,Photorefractive Crystals in Coherent Optical Systems, Springer Series in Optical Sciences (Springer-Verlag, Heidelberg, 1991).Google Scholar
  2. 2.
    M. CRONIN-GOLOMB,Opt. Commun. 89 (1992) 276.Google Scholar
  3. 3.
    E. R. PARSHALL-GUJRAL and M. CRONIN-GOLOMB,Photorefractive Materials, Effects and Devices, PRM'93 Theophania, 1993, p. 162.Google Scholar
  4. 4.
    P. S. J. RUSSELL,Phys. Rep. 71 (1981) 209.Google Scholar
  5. 5.
    L. SOLYMAR and D. J. COOKE,Volume Holography and Volume Gratings (Academic Press, London, 1981).Google Scholar
  6. 6.
    L. BOUTSIKARIS and F. DAVIDSON,Appl. Opt. 32 (1993) 1559.Google Scholar
  7. 7.
    S. MALLICK, D. ROUÈDE and A. G. APOSTOLIDIS,J. Opt. Soc. Am. B 4 (1987) 1247.Google Scholar
  8. 8.
    A. BRIGNON and K. H. WAGNER,Opt. Commun. 101 (1993) 239.Google Scholar
  9. 9.
    A. MARRAKCHI, R. V. JOHNSON and J. A. R. TANGUAY,J. Opt. Soc. Am. B 3 (1986) 321Google Scholar
  10. 10.
    A. MARRAKCHI, R. V. JOHNSON and J. A. R. TANGUAY,IEEE J. Quantum Electron.QE-23 (1987) 2142.Google Scholar
  11. 11.
    A. ERDMANN and R. KOWARSCHIK,IEEE J. Quantum Electron.QE-24 (1988) 155.Google Scholar
  12. 12.
    G. NOTNI and R. KOWARSCHIK,J. Opt. Soc. Am. A 11 (1989) 1682.Google Scholar
  13. 13.
    W. KRÓLIKOWSKI and M. CRONIN-GOLOMB,Opt. Commun. 89 (1992) 88.Google Scholar
  14. 14.
    A. YARIV and P. YEH,Optical Waves in Crystals, Wiley Series in Pure and Applied Optics (Wiley, New York, 1984).Google Scholar
  15. 15.
    K. H. RINGHOFER, S. TAO, J. TAKACS and L. SOLYMAR,Appl. Phys. B 52 (1991) 259.Google Scholar
  16. 16.
    A. MARRAKCHI and J. P. HUIGNARD,Appl. Phys. 24 (1981) 131.Google Scholar
  17. 17.
    B. FISCHER and S. WEISS,Appl. Phys. Lett. 53 (1988) 257.Google Scholar
  18. 18.
    N. V. KUKHTAREV, V. B. MARKOV, S. G. ODULOV, M. S. SOSKIN and V. L. VINETSKII,Ferroelectrics 22 (1979) 949.Google Scholar
  19. 19.
    W. F. AMES,Numerical Methods for Partial Differential Equations (Academic Press, New York, 1977).Google Scholar
  20. 20.
    H. TOPARKUS,Numerische Behandlung von Differentialgleichungen I, Wissenschaftliche Beitraege der FSU Jena (Friedrich-Schiller Universitaet Jena, 1983) p. 62.Google Scholar
  21. 21.
    D. J. WEBB, A. KIESSLING, B. I. STURMAN, E. SHAMONINA and K. H. RINGHOFER,Opt. Commun. 108 (1994) 31.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • E. Shamonina
    • 1
  • M. Mann
    • 1
  • K. H. Ringhofer
    • 1
  • A. Kiessling
    • 2
  • R. Kowarschik
    • 2
  1. 1.Department of PhysicsUniversity of OsnabrückOsnabrückGermany
  2. 2.Department of PhysicsFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations