Theoretica chimica acta

, Volume 46, Issue 3, pp 205–221 | Cite as

An open-shell INDO study of models for the stabilized O ion in γ-irradiated alkaline ices

  • Andrew T. Pudzianowski
  • Robert N. Schwartz
Original Investigations


Structural models for stabilized O in γ-irradiated alkaline ices are evaluated. INDO calculations on hydrated O indicate octahedral coordination and hydrogen bond orientations for the water molecules are preferred. INDO results for hydrated OH are compared with crystallographic data for NaOH hydrates: a scaling factor for calculated hydrogen bond lengths is developed and applied to hydrogen bonded O models. The hydrated O model is closely similar to the hydrated anions in KF · 4H2O, NaOH · 4H2O, and NaOH · 7H2O. A second model is developed, involving H3O+ along with H2O, in the O stabilization shell. Both models are discussed in terms of alkaline ice radiation chemistry.

Key words

O ion in irradiated alkaline ice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kevan, L.: Radiation chemistry of frozen aqueous solutions, in: Radiation chemistry of aqueous systems, Stein, G., Ed. New York: Wiley-Interscience 1968Google Scholar
  2. 2.
    Kevan, L.: Radiation chemistry of frozen polar systems, in: Actions chimiques et biologiques des radiations, Vol. 13, Haissinsky, M., Ed. Paris: Masson 1969Google Scholar
  3. 3.
    Schlick, S., Kevan, L.: J. Phys. Chem.81, 1093 (1977)Google Scholar
  4. 4.
    Ershov, B. G., Puntezhis, S. A., Pikaev, A. K.: Khim. Vys. Energ.5, 185 (1971)Google Scholar
  5. 5.
    Schlick, S., Narayana, P. A., Kevan, L.: J. Chem. Phys.64, 3153 (1976)Google Scholar
  6. 6.
    Schuster, P.: Theory of hydrogen bonding in water and ion hydration, in: Structure of water and aqueous solutions (Proceedings of the International Symposium, Marburg 1973), Luck, W. A. P., Ed. Weinheim: Verlag Chemie 1974Google Scholar
  7. 7.
    Schuster, P., Jakubetz, W., Marius, W.: Topics in current chemistry, Vol. 60. Berlin: Springer-Verlag 1975Google Scholar
  8. 8.
    Pople, J. A., Beveridge, D. L.: Approximate molecular orbital theory. New York: McGraw-Hill 1970Google Scholar
  9. 9.
    Breitschwerdt, K. G., Kistenmacher, H.: Chem. Phys. Letters14, 288 (1972)Google Scholar
  10. 10.
    Cremaschi, P., Gamba, A., Simonetta, M.: Theoret. Chim. Acta (Berl.)25, 237 (1972)Google Scholar
  11. 11.
    Lischka, H., Plesser, Th., Schuster, P.: Chem. Phys. Letters6, 263 (1970)Google Scholar
  12. 12.
    Russeger, P., Lischka, H., Schuster, P.: Theoret. Chim. Acta (Berl.)24, 191 (1972)Google Scholar
  13. 13.
    Beurskens, G., Jeffrey, G. A.: J. Chem. Phys.41, 924 (1964)Google Scholar
  14. 14.
    Respectively QCPE 135 and QCPE 141, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, USAGoogle Scholar
  15. 15.
    Fournier, M., Allavena, M., Potier, A.: Theoret. Chim. Acta (Berl.)42, 145 (1976)Google Scholar
  16. 16.
    Chesnut, D. B., Wormer, P. E. S.: Theoret. Chim. Acta (Berl.)20, 250 (1971)Google Scholar
  17. 17.
    Arshadi, M., Kebarle, P.: J. Phys. Chem.74, 1483 (1970)Google Scholar
  18. 18.
    Arshadi, M., Yamdagni, R., Kebarle, P.: J. Phys. Chem.74, 1475 (1970)Google Scholar
  19. 19.
    Kevan, L.: personal communicationGoogle Scholar
  20. 20.
    Norgett, M. J., Stoneham, A. M., Pathak, A. P.: J. Phys. C: Solid State Phys.10, 555 (1977)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Andrew T. Pudzianowski
    • 1
  • Robert N. Schwartz
    • 1
  1. 1.Department of ChemistryUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations