Journal of Applied Electrochemistry

, Volume 24, Issue 8, pp 779–784 | Cite as

Non-toxic organic zinc corrosion inhibitors in hydrochloric acid

  • E. Stupnišek-Lisac
  • S. Podbršček
  • T. Sorić


The efficiency of some substituted N-arylpyrroles as zinc corrosion inhibitors in hydrochloric acid was examined by electrochemical (d.c. and a.c.) and gravimetric methods. The influence of the structure and composition of a molecule on the inhibition characteristics was observed by investigation of the action of the functional group located on the pyrrole ring (-CHO) and at the ortho position of the benzene ring (-H, -Cl, -CH3). The results have shown that all the organic compounds investigated possess good inhibiting properties. In contrast to most commercial acid corrosion inhibitors, which are highly toxic and very hazardous products, substituted N-arylpyrroles are nontoxic compounds with good environmental characteristics.


Benzene Organic Compound Hydrochloric Acid Pyrrole Benzene Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Schmitt and K. Bedbur,Werkstoffe und Korrosion 36 (1985) 273.Google Scholar
  2. [2]
    S. L. Granese, B. M. Rosales, C. Oviedo and J. O. Zerbino,Corros. Sci. 33 (1992) 1439.Google Scholar
  3. [3]
    S. L. Granese,Corrosion 44 (1988) 322.Google Scholar
  4. [4]
    I. L. Rosenfeld, ‘Corrosion inhibitors’, McGraw-Hill, New York (1981).Google Scholar
  5. [5]
    M. S. Abdel-Aal, Z. A. Ahmed and M. S. Hassan,J. Appl. Elecrochem. 22 (1992) 1104.Google Scholar
  6. [6]
    K. Wipperman, J. W. Schultze, R. Kessel and J. Penninger,Corros. Sci. 32 (1991) 205.Google Scholar
  7. [7]
    C. Fiaud, S. Bensarsa, I. Demesy des Aulnois and M. Tzinmann,Brit. Corros. J. 22 (1987) 109.Google Scholar
  8. [8]
    Awad I. Ahmed and S. Abdel-Hakam,Anticorrosion, No. 3 (1989) 4.Google Scholar
  9. [9]
    C. S. Venkatachalam, S. R. Rajagopalan and M. V. C. Sastry,Electrochim. Acta 26 (1981) 1257.Google Scholar
  10. [10]
    C. A. Witt, I. Drzisga and W. Kola,Metal 39 (1985) 828.Google Scholar
  11. [11]
    L. Horner and E. Pliefke,Werkstoffe und Korrosion 37 (1986) 457.Google Scholar
  12. [12]
    M. Troquet and J. PegeitiElectrochim. Acta 27 (1982) 197.Google Scholar
  13. [13]
    G. N. Ekilik, V. P. Grigorev and V. V. Ekilik,Zasch. Met. 14 (1978) 357.Google Scholar
  14. [14]
    E. Stupnišek-Lisac, K. Salajster-Berković and J. Vorkapić Furač,Corros. Sci. 28 (1988) 1189.Google Scholar
  15. [15]
    E. Stupnišek-Lisac and M. Metikoš-Huković, Proceedings of the 7th European symposium on corrosion inhibitors, Ferrara,1 (1990) p. 203.Google Scholar
  16. [16]
    E. Stupnišek-Lisac and M. Metikoš-Huković,Brit. Corros. J. 28 (1993) 74.Google Scholar
  17. [17]
    E. Stupišek-Lisac, M. Metikoš-Huković, D. Lenčić, J. Vorkapić-Furač and K. Berković,Corrosion 48 (1992) 924.Google Scholar
  18. [18]
    K. Imuro and T. Hanafuza,Bull. Chem. Soc. Japan 49 (1976) 1363.Google Scholar
  19. [19]
    F. Mansfeld,Corrosion 29 (1973) 397.Google Scholar
  20. [20]
    I. Epelboin, M. Keddam and H. Takenouti,J. Appl. Electrochem. 2 (1972) 71.Google Scholar
  21. [21]
    J. A. Maga,J. Agric. Food Chem. 29 (1981) 691.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • E. Stupnišek-Lisac
    • 1
  • S. Podbršček
    • 1
  • T. Sorić
    • 2
  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.INA-NaftaplinZagrebCroatia

Personalised recommendations