Advertisement

Influence of environmental factors on the homoeotic effect ofloboid-ophthalmoptera inDrosophila melanogaster

  • Willem J. Ouweneel
Article

Summary

This paper deals with the influence of environmental factors, particularly those that may be expected to change the rate of growth in the larval period, on the homoeotic wing-like outgrowths in the eyes of the strainloboid-ophthalmoptera (see Ouweneel, 1969a, b).

The penetrance of the homoeotic effect increases with maternal age (Table 1); Delcour (1968) furnished evidence that there is a relation between maternal age and growth rate of tissues in the larva. Penetrance is inversely related to temperature; at low temperatures the development of the whole larva is strongly retarded, but the growth of the eye disc is probably less retarded, so that it grows relatively more than at higher temperatures. It is notable that the temperature-sensitive period (24–60 h after hatching, at 25° C; Fig. 1) precedes, and coincides with, the period of abnormal hyperplasia in the disc (Ouweneel, 1969b).

Acetamide, given in the food, enhances the number of facets so that even the wild type eye size may be reached; in proportion to its concentration it moreover strongly increases the penetrance of the wing-like outgrowths. At higher concentrations, however, when eye enlargement is maximal, the penetrance of the outgrowths decreases again (Figs. 2–5). The optimal concentration (at which the penetrance is maximal) is higher at higher temperatures (Figs. 2–5; cf. Fig. 7). The sensitive period for acetamide extends from about 0–55 h after hatching (at 25° C) (Fig. 6). Uracil increases the penetrance of the homoeotic effect (Table 2). Sodium tetraborate seems to increase the penetrance of the homoeotic outgrowths, but to reduce their expressivity slightly at higher concentrations. Starvation (Tabel 3) and farnesol medium prolong the larval period, but do not show clear-cut effects on the homoeotic phenomenon, probably because they only postpone metamorphosis, and do not retard the whole of larval development (compare temperature effect, above). UV irradiation influenced penetrance, but lower dosages had a greater effect than higher ones; the former suppressed the homoeotic effect at early larval ages, but stimulated it at later ages; this points to the occurrence of two separate sensitive periods for UV (Table 4). In all experiments clear-cut sexual differences in sensitivity were observed, which may be ascribed to the sex-linked location of theophthalmoptera modifier (Ouweneel, 1969a).

Evidence can be found in the literature that enhanced proliferation is a prerequisite for many homoeotic phenomena in the broad sence (cf. Fig. 8). The present study and previous data show that also homoeotic mutations often interact with agents causing changes in growth rate; it is possible that the basic action of all homoeotic mutations has to do with such changes.

Keywords

Acetamide Larval Period Sensitive Period Farnesol Sodium Tetraborate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Es wurde der Einfluß wachstumsändernder Umweltfaktoren während der Larvalentwicklung auf die homöotischen, flügelähnlichen Auswüchse im Auge des Stammesloboid-ophthalmoptera untersucht.

Die Penetranz des homöotischen Effekts steigt an mit dem Alter der Mutterfliegen; nach Literaturangaben besteht ein Zusammenhang zwischen mütterliches Alter und Wachstumsgeschwindigkeit der Gewebe während der Larvalentwicklung. Zwischen Penetranz und Temperatur besteht ein umgekehrtes Verhältnis; dieses wird erklärt durch die Annahme, daß obwohl die Entwicklung der ganzen Larve bei niedriger Temperatur stark verzögert wird, das Wachstum der Augenimaginalscheibe weniger stark gehemmt wird, so daß die Augenscheibe relativ mehr wächst als bei höheren Temperaturen. Die temperaturempfindliche Periode (24–60 Std nach dem Schlüpfen bei 25° C) bestreicht die Periode der erhöhten Hyperplasie in der Augenscheibe (Ouweneel, 1969b).

Azetamid im Futter erhöht die Zahl der Augenfazetten, manchmal bis zur normalen Augengröße; daneben erhöht es die Penetranz des homöotischen Effekts beträchtlich in Abhängigkeit der Konzentration. Allerdings sinkt die Penetranz bei Konzentrationen, die eine maximale Augenvergrößerung bewirken, wieder ab. Die optimale Konzentration (bei der die Penetranz maximal ist) ist höher, je höher die Temperatur. Die empfindliche Periode für Azetamid erstreckt sich von etwa 0 bis 55 Std nach dem Schlüpfen (bei 25° C). Urazil erhöht die Penetranz des homöotischen Effekts. Natriumtetraborat erhöht die Penetranz, setzt aber die Expressivität bei höheren Konzentrationen leicht herab.

Hüngern und Farnesolgaben im Futter verlängern die Larvalentwicklung, ohne jedoch den homöotischen Effekt eindeutig zu beeinflussen, wahrscheinlich weil sie nur die Metamorphose hinausschieben, ohne die gesamte Larvalentwicklung zu verzögern (siehe oben bei Temperatureffekt). Ultraviolettbestrahlung hat in niedrigen Dosierungen einen stärkeren Effekt auf die Penetranz als in hohen Dosierungen. Bei jungen Larven wird die Penetranz herabgesetzt, bei älteren Larven dagegen erhöht, was auf zwei unterschiedene empfindliche Perioden für Ultraviolett hinweist. In allen Experimenten wurden deutliche Geschlechtsunterschiede in der Empfindlichkeit festgestellt, die der geschlechtsgebundenen Lokalisation desophthalmoptera-Modifikators zugeschrieben werden können.

Aus Literaturangaben läßt sich schliessen, daß erhöhte Proliferation eine Voraussetzung ist für viele homöotische Erscheinungen im weitesten Sinne (einschließlich Transdetermination). Es wird auf die Möglichkeit hingewiesen, daß alle homöotischen Mutationen sich grundsätzlich durch Änderungen der Wachstumsgeschwindigkeit auswirken.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abd-El-Wahab, A.: The determination of facet number inDrosophila melanogaster. I. J. Genet.56, 288–295 (1959a); II. 437–442 (1959b); III. 475–481 (1959c); IV. 482–485 (1959d).Google Scholar
  2. Beadle, G. W., E. L. Tatum, and C. W. Clancy: Food level in relation to rate of development and eye pigmentation inDrosophila melanogaster. Biol. Bull.75, 447–462 (1938).Google Scholar
  3. Begg, M., and J. H. Sang: The time of action of the geneantennaless and its effect on the development of the cephalic complex ofDrosophila melanogaster. J. exp. Biol.21, 1–4 (1945).Google Scholar
  4. Bodenstein, D.: Investigations on the problem of metamorphosis. V. Some factors determining the facet number in theDrosophila mutantBar. Genetics24, 494–508 (1939).Google Scholar
  5. Braun, W.: The role of developmental rates in the production of notched wing characters inDrosophila melanogaster. Proc. nat. Acad. Sci. (Wash.)25, 238–242 (1939).Google Scholar
  6. —: Experimental evidence on the production of the mutantaristapedia by a change of developmental velocities. Genetics25, 143–149 (1940).Google Scholar
  7. —: The effect of changes in time of development on the phenotype of mutants ofDrosophila melanogaster. Univ. Calif. Publ. Zool.49, 61–84 (1942).Google Scholar
  8. Chevais, S.: Déterminisme de la taille de l'œil chez le mutantBar de la Drosophile. Bull. Biol. France et Belg.77, 297–364 (1943).Google Scholar
  9. Dearden, M.: Experiments on the effect of farnesol on the development of normal andBareyedDrosophila. J. Insect Physiol.10, 195–210 (1964).Google Scholar
  10. Delcour, J.: Cell size and cell number in the wing ofDrosophila melanogaster as related to parental ageing. Exp. Geront.3, 247–255 (1968).Google Scholar
  11. —, and M. J. Heuts: Cyclic variations in wing size related to parental ageing inDrosophila melanogaster. Exp. Geront.3, 45–53 (1968).Google Scholar
  12. DeMarinis, F.: A further survey of amides and their effect on the development ofBar eye. Drosoph. Inform. Serv.41, 149–150 (1966).Google Scholar
  13. —: A comparison of the effects of 5-bromouracil and uracil on the facet number of theBar eye. Drosoph. Inform. Serv.42, 71–72 (1967).Google Scholar
  14. —, and F. Sheibley: A comparative study of the action of glutaramide and uracil in the modification ofBar eye inDrosophila, p. 303–307. In: Mechanisms of mutation and inducing factors; Proc. Symp. Mutat. Process, Prague. Praha: Academia 1965.Google Scholar
  15. Driver, E. C.: Temperature and gene expression inDrosophila. J. exp. Zool.59, 1–29 (1931).Google Scholar
  16. Eloff, G.: The effect of ultra-violet radiation on crossing-over, and on wing development inDrosophila melanogaster. Genetica21, 29–40 (1939).Google Scholar
  17. Epsteins, F. F.: Über Modifikationen (Phaenokopien) der Flügelform nach Bestrahlung mit U.V.-Licht beiDrosophila. Genetica21, 225–242 (1939).Google Scholar
  18. Gehring, W.: The stability of the determinative state in cultures of imaginal disks inDrosophila, p. 136–154. In: The stability of the differentiated state (ed. H. Ursprung). Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  19. Geigy, R.: Erzeugung rein imaginaler Defekte durch ultraviolette Eibestrahlung beiDrosophila melanogaster. Wilhelm Roux' Archiv125, 406–447 (1931).Google Scholar
  20. Gersh, E. S.: Chemically induced phenocopies inDrosophila melanogaster. Drosoph. Inform. Serv.20, 86 (1946).Google Scholar
  21. Goldschmidt, R.: Physiological genetics. New York: McGraw-Hill Book Co. 1938.Google Scholar
  22. —: The material basis of evolution. New Haven: Yale Univ. Press 1940.Google Scholar
  23. —, and L. K. Piternick: The genetic background of chemically induced phenocopies inDrosophila. I. J. exp. Zool.135, 127–202 (1957a); II. J. exp. Zool.136, 201–228 (1957b).Google Scholar
  24. Gratziansky, W. I.: Effect of x-rays upon different larval stages ofDrosophila melanogaster and phenocopy frequency. C. R. Acad. Sci. URSS25, 239–243 (1939).Google Scholar
  25. Hadorn, E.: Dynamics of determination, p. 85–104. In: Major problems in developmental biology (ed. M. Locke). New York and London: Acad. Press 1967.Google Scholar
  26. —, R. Hürlimann, G. Mindek, G. Schubiger, u. M. Staub: Entwicklungsleistungen embryonaler Blasteme vonDrosophila nach Kultur im Adultwirt. Rev. suisse Zool.75, 557–569 (1968).Google Scholar
  27. Haskins, C. P., and E. V. Enzmann: Modifications of the compound eye ofDrosophila melanogaster arising under X-irradiation. Amer. Naturalist71, 87–90 (1937).Google Scholar
  28. Hay, E. D.: Dedifferentiation and metaplasia in Vertebrate and Invertebrate regeneration, p. 85–108. In: The stability of the differentiated state (ed. H. Ursprung). Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  29. Hirose, Y.: Autoradiographic studies of antibiotic effects on the larval tissues inDrosophila melanogaster. Mem. Kōnan Univ., Sci. Ser.11, 29–41 (1968).Google Scholar
  30. Kaji, S.: Experimental studies on the developmental mechanism of theBar eye inDrosophila melanogaster. I. Annot. Zool. Japon.27, 194–200 (1954); II. Annot. Zool. Japon.28, 152–157 (1955); III. Annot. Zool. Japon.29, 23–27 (1956); IV. Mem. Coll. Sci. Univ. Kyoto25, 17–22 (1958a); V. Mem. Coll. Sci. Univ. Kyoto25, 161–164 (1958b); VI. Mem. Kōnan Univ., Sci. Ser.4, art. 13, 1–8 (1960).Google Scholar
  31. —, and M. Ogaki: The sensitive period ofBar-eye discs inDrosophila melanogaster. Dobutsugaku Zasshi (Zool. Magaz.)62, 432–436 (1953).Google Scholar
  32. Landauer, W.: The phenocopy concept: illusion or reality ? Experientia (Basel)15, 409–448 (1959).Google Scholar
  33. Lederman-Klein, A.: The morphology and physiological genetics of a homoeotic mutant inDrosophila melanogaster. Jerusalem: Thesis, Hebrew Univ. 1962.Google Scholar
  34. Lewis, E. B.: Genetic control and regulation of pathways, p. 231–252. In: The role of chromosomes in development (ed. M. Locke). New York and London: Acad. Press 1964.Google Scholar
  35. Mindek, G.: Proliferations- und Transdeterminationsleistungen der weiblichen Genital-Imaginalscheiben vonDrosophila melanogaster nach Kulturin vivo. Wilhelm Roux' Archiv161, 249–280 (1968).Google Scholar
  36. Needham, A. E.: Regeneration in theArthropoda and its endocrine control, p. 283–323. In: Regeneration in animals and related problems, (ed. V. Kiortsis and H. A. L. Trampusch), Amsterdam: North-Holland Publ. Comp. 1965.Google Scholar
  37. Ogaki, M.: Mechanism of manifestation in theBar-eyed mutant ofDrosophila melanogaster. Proc. Int. Genet. Symp. (Suppl. of Cytologia)1956, 153–155 (1957).Google Scholar
  38. Ouweneel, W. J.: Genetic analysis ofloboid-ophthalmoptera, a homoeotic strain inDrosophila melanogaster. (1969a) (in press).Google Scholar
  39. —: Morphology and development ofloboid-ophthalmoptera, a homoeotic strain inDrosophila melanogaster. Wilhelm Roux' Archiv164, 1–14 (1969b).Google Scholar
  40. Sang, J. H., and J. M. McDonald: Production of phenocopies inDrosophila using salts, particularly sodium metaborate. J. Genet.52, 392–412 (1954).Google Scholar
  41. Villee, C. A.: A study of hereditary homoeosis: the mutanttetraltera inDrosophila melanogaster. Univ. Calif. Publ. Zool.49, 125–183 (1942).Google Scholar
  42. —: Phenogenetic studies of the homoeotic mutants ofDrosophila melanogaster. I. The effects of temperature on the expression ofaristapedia. J. exp. Zool.93, 75–98 (1943).Google Scholar
  43. —: Phenogenetic studies of the homoeotic mutants ofDrosophila melanogaster. II. The effects of temperature on the expression ofproboscipedia. J. exp. Zool.96, 85–102 (1944).Google Scholar
  44. —: Phenogenetic studies of the homoeotic mutants ofDrosophila melanogaster. III. The effects of temperature on the expression ofbithorax-34e. Amer. Naturalist79, 246–258 (1945a).Google Scholar
  45. —: Developmental interactions of homoeotic and growth rate genes inDrosophila melanogaster. J. Morph.77, 105–118 (1945b).Google Scholar
  46. —: IV. Homoeotic and “growth rate” genes. Genetics31, 428–437 (1946a).Google Scholar
  47. —: Some effects of x-rays on development inDrosophila. J. exp. Zool.101, 261–280 (1946b).Google Scholar
  48. —: A quantitative study of phenocopy production with monochromatic ultraviolet irradiation. Biol. Bull.92, 1–9 (1947).Google Scholar
  49. Vogt, M.: Zur labilen Determination der Imaginalscheiben vonDrosophila. II. Die Umwandlung präsumptiven Fühlergewebes in Beingewebe. Biol. Zbl.65, 238–254 (1946a).Google Scholar
  50. —: Zur labilen Determination der Imaginalscheiben vonDrosophila. IV. Die Umwandlung präsumptiven Rüsselgewebes in Beinoder Fühlergewebe. Z. Naturforsch,1, 469–475 (1946b).Google Scholar
  51. —: Zur labilen Determination der Imaginalscheiben vonDrosophila. III. Analyse der Manifestierungsbedingungen sowie der Wirkungsweise der zu Antennen- und Palpusverdoppelungen führenden GenmutationDeformed-recessive-Lüers (Dfd r−L). Biol. Zbl.66, 81–105 (1947a).Google Scholar
  52. —: Zur labilen Determination der Imaginalscheiben vonDrosophila. V. Beitrag zur Manifestierung der Mutanteantennaless. Biol. Zbl.66, 388–395 (1947b).Google Scholar
  53. —: Beeinflussung der Antennendifferenzierung durch Colchizin bei derDrosophila Mutantearistopedia. Experientia (Basel)3, 156–157 (1947c).Google Scholar
  54. Waddington, C. H.: Some developmental effects of x-rays inDrosophila. J. exp. Biol.19, 101–117 (1942).Google Scholar
  55. —: The development of some “leg genes” inDrosophila. J. Genet.45, 29–43 (1943).Google Scholar
  56. —, and R. Clayton: A note on some alleles ofaristapedia. J. Genet.51, 123–129 (1952).Google Scholar
  57. Wigglesworth, V. B.: The physiology of insect metamorphosis. Cambridge: Univ. Press 1954.Google Scholar
  58. Zimm, G. G.: An analysis of growth abnormalities associated with the eye-mutantLobe inDrosophila melanogaster. J. exp. Zool.116, 289–319 (1951).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Willem J. Ouweneel
    • 1
  1. 1.Hubrecht LaboratoryUtrechtNetherlands

Personalised recommendations