Journal of Materials Science

, Volume 26, Issue 1, pp 196–202 | Cite as

On the choice of hexagonal boron nitride for high pressure phase transformation using the catalyst solvent process

  • M. M. Bindal
  • B. P. Singh
  • S. K. Singhal
  • R. K. Nayar
  • R. Chopra
  • A. Dhar


The degree of three-dimensional ordering, particle-size distribution and purity of two types of hexagonal boron nitride have been studied with a view to establish any possible correlation between these characteristics with the conversion of hexagonal form to cubic phase at high pressure and high temperature using magnesium as the catalyst solvent. The crystalline phases formed at high pressure and high temperature have been studied and the dependence of degree of graphitization of boron nitride and purity on the cubic boron nitride conversion discussed.


Polymer Magnesium Boron High Pressure Hexagonal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Wentorf, Jr.,J. Chem. Phys. 26 (1957) 956.Google Scholar
  2. 2.
    Idem., ibid. 34 (1961) 809.Google Scholar
  3. 3.
    Idem., in Progress in Very High Pressure Research, Proceedings of an International Conference, New York, June 13–14, 1960. edited by F. P. Bundy, W. R. Hibbard, Jr and H. M. Strong, (John Wiley, New York, 1961) p. 82.Google Scholar
  4. 4.
    K. Kudaka, H. Konno andT. Matoba,Kogyo-Kagaku Zasshi (J. Chem., Soc. Japan, Ind. Chem. Section) 69 (1966) 365.Google Scholar
  5. 5.
    M. Ushio, H. Saito andS. Nagano,ibid.,74 (1971) 598.Google Scholar
  6. 6.
    R. C. DeVries andJ. F. Fleischer,J. Cryst. Growth 13/14 (1972) 88.Google Scholar
  7. 7.
    O. Fukunaga, T. Sato, M. Iwata andH. Hiraoka, Proceedings of the 4th International Conference on High Pressure, Kyoto, Japan (1974) p. 454.Google Scholar
  8. 8.
    T. Endo, O. Fukunaga andM. Iwata,J. Mater. Sci. 14 (1979) 1375.Google Scholar
  9. 9.
    H. Saito, M. Ushio andS. Nagano,Yogyo Kyokai Shi. 74 (1970) 7.Google Scholar
  10. 10.
    T. Kobayashi,J. Chem. Phys. 70 (1979) 5898.Google Scholar
  11. 11.
    S. DeForrest, PhD Thesis, Brigham Young University, USA (1965).Google Scholar
  12. 12.
    A. S. Balchan andH. G. Drickamer,Rev. Sci. Instrum. 32 (1961) 308.Google Scholar
  13. 13.
    F. P. Bundy andR. H. Wentorf, Jr.J. Chem. Phys. 38 (1963) 1144.Google Scholar
  14. 14.
    F. R. Corrigan andF. P. Bundy,ibid. 63 (1975) 3812.Google Scholar
  15. 15.
    N. L. Coleburn andJ. W. Forbes,J. Chem. Phys. 48 (1968) 555.Google Scholar
  16. 16.
    K. Ichinose, M. Wakatsuki, T. Aoki andY. Maeda, Proceedings of the Fourth International Conference on High Pressure, Kyoto, Japan (1974) p. 436.Google Scholar
  17. 17.
    J. Thomas, Jr., N. E. Weston andT.E. O'Conner,J. Amer. Chem. Soc. 84 (1963) 4619.Google Scholar
  18. 18.
    D. Briggs andM. P. Seah (eds), “Practical Surface Analysis by Auger and Photoelectron Spectroscopy”, (Wiley, Chichester, 1983)Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • M. M. Bindal
    • 1
  • B. P. Singh
    • 1
  • S. K. Singhal
    • 1
  • R. K. Nayar
    • 1
  • R. Chopra
    • 1
  • A. Dhar
    • 1
  1. 1.National Physical LaboratoryNew DelhiIndia

Personalised recommendations