Journal of Materials Science

, Volume 26, Issue 1, pp 177–188 | Cite as

The effect of carbon black concentration on the dynamic mechanical properties of bromobutyl rubber

  • Naba K. Dutta
  • D. Khastgir
  • D. K. Tripathy
Papers

Abstract

The effect of carbon black concentration on the dynamic mechanical properties of bromobutyl rubber vulcanizates has been studied over a wide range of temperature (− 150 to + 250 °C), frequency (3.5 to 110 Hz) and dynamic strain amplitude (0.07 to 5%). The influence of carbon black concentration on the glass-rubber transition has also been investigated with respect to the isochronal variation in dynamic properties. The influence of carbon black concentration consists mainly of the change in the levels of the moduli values in the glassy and rubbery state. In the glassy region; the increase in stiffness with carbon black loading may be fully explained by the hydrodynamic effect of the carbon black particles embedded in the polymer continuum. With increased carbon black concentration the glass-rubber transition temperature (tan δ peak temperature) does not show a shift in its location but peak shoulder broadening and decrease in peak height are observed. At a particular temperature, the effect of carbon black concentration on dynamic properties of bromobutyl rubber is dependent on the combined effects of applied strain amplitude and frequency. With increase in filler concentration the thermal stability of the vulcanizate increases.

Keywords

Strain Amplitude Dynamic Strain Dynamic Mechanical Property Carbon Black Particle Hydrodynamic Effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Medalia,Rubber Chem. Technol. 46 (1973) 877.Google Scholar
  2. 2.
    Idem., ibid. 47 (1974) 441.Google Scholar
  3. 3.
    J. D. Ulmer, W. M. Hess andV. E. Chirico,ibid. 47 (1974) 729.Google Scholar
  4. 4.
    Y. Isono andJ. D. Ferry,ibid. 57 (1984) 925.Google Scholar
  5. 5.
    J. D. Ulmer, V. E. Chirico andC. E. Scott,ibid. 46 (1973) 897.Google Scholar
  6. 6.
    A. K. Sircar andT. G. Lamand,ibid. 48 (1975) 79.Google Scholar
  7. 7.
    J. M. Caruthers, R. E. Cohen andA. I. Medalia,ibid. 49 (1976) 1076.Google Scholar
  8. 8.
    A. I. Medalia,ibid. 51 (1978) 437.Google Scholar
  9. 9.
    J. B. Donnet andA. Voet, “Carbon Black — Physics Chemistry and Elastomer Reinforcement” (New York, Dekker, 1976).Google Scholar
  10. 10.
    A. R. Payne andW. F. Watson,Rubber Chem. Technol. 36 (1963) 147.Google Scholar
  11. 11.
    A. R. Payne andR. E. Whittaker,ibid. 44 (1971) 440.Google Scholar
  12. 12.
    N. K. Dutta andD. K. Tripathy,Plast. Rub. Process. Appl. 11 (1989) 235.Google Scholar
  13. 13.
    Idem., ibid. 12 (1989) 1.Google Scholar
  14. 14.
    A. Voet andF. R. Cook,Rubber Chem. Technol. 41 (1968) 1215.Google Scholar
  15. 15.
    A. R. Payne,J. Appl. Polym. Sci. 7 (1963) 213.Google Scholar
  16. 16.
    Idem., in “Reinforcement of Elastomers”, edited by G. Kraus (Interscience, New York, 1965) Chap 3.Google Scholar
  17. 17.
    K. Arai andJ. D. Ferry,Rubber Chem. Technol. 59 (1986) 593.Google Scholar
  18. 18.
    N. K. Dutta andD. K. Tripathy,Polymer Testing 9 (1990) 3.Google Scholar
  19. 19.
    A. Voet andF. R. Cook,Rubber Chem. Technol. 40 (1967) 1364.Google Scholar
  20. 20.
    A. I. Medalia,Rubber World 168 (1973/5) 49.Google Scholar
  21. 21.
    Instruction Manual ‘Automatic Dynamic Elasticoviscosity meter Rheovibron DDV-III-EP’ Toyo Baldwin Japan, 1986.Google Scholar
  22. 22.
    A. Voet andJ. C. Morawski,Rubber Chem. Technol. 47 (1974) 758;47 (1974) 764.Google Scholar
  23. 23.
    H. Smallwood,J. Appl. Phys. 15 (1944) 758.Google Scholar
  24. 24.
    Idem., Rubber Chem. Technol. 18 (1945) 292.Google Scholar
  25. 25.
    A. Einstein,Ann. Phys. 19 (1906) 289.Google Scholar
  26. 26.
    Idem., ibid. 34 (1911) 1591.Google Scholar
  27. 27.
    M. L. Studebaker,Rubber Chem. Technol. 30 (1957) 1400.Google Scholar
  28. 28.
    F. Bucche,J. Appl. Polym. Sci. 4 (1960) 107.Google Scholar
  29. 29.
    Idem., ibid. 5 (1961) 271.Google Scholar
  30. 30.
    A. R. Payne,ibid. 3 (1959) 127.Google Scholar
  31. 31.
    Idem., ibid. 6 (1962) 57.Google Scholar
  32. 32.
    Idem., ibid. 7 (1963) 873.Google Scholar
  33. 33.
    N. S. Subramanian, J. G. Dipinto andA. E. Hirsch,Plast. Rub. Process. Appl. 1 (1981) 293.Google Scholar
  34. 34.
    P. P. A. Smit,Rheol. Acta 5 (1966/4) 277.Google Scholar
  35. 35.
    G. M. Bartenev,Polym. Sci. USSR A24 (1982) 2099.Google Scholar
  36. 36.
    N. K. Dutta andD. K. Tripathy,Kautsch Gummi, Kunstst. 42 (1989) 665.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Naba K. Dutta
    • 1
  • D. Khastgir
    • 1
  • D. K. Tripathy
    • 1
  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations