Abstract
Three Cu-20% Fe composites with different iron powder sizes were fabricated using powder metallurgy processes. The strengths of these composites after extensive deformation processing by rod swaging and wire drawing were shown to be anomalously higher than those predicted by rule of mixtures equations. However, the strengths obey a Hall-Petch type relationship with the iron filament spacings. The strengths of the Cu-20% Fe composites after equivalent deformation processing increased with decreasing initial iron powder size. Comparison of a Cu-20% Fe composite with a similar Cu-20% Nb composite showed that Cu-20% Fe was stronger after an identical degree of deformation processing. This increase in strength of a Cu-20% Fe composite over that of a Cu-20% Nb composite correlated with the greater shear modulus of iron compared to niobium using a barrier model for hardening.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
N. P. Cheremisinoff andP. N. Cheremisinoff, “Fiberglass-Reinforced Plastics Deskbook” (Ann Arbor Science, Ann Arbor, Michigan, 1978) Ch. 1.
K. M. Ralls, T. H. Courtney andJ. Wulff, “Introduction to Materials Science and Engineering” (Wiley, New York, 1976) p. 400.
B. D. Agarwal andL. J. Broutman, “Analysis and Performance of Fiber Composites” (Wiley, New York, 1980) Ch. 1.
T. A. Nielson, MS thesis, Michigan Technological University (1982).
C. L. Trybus, W. A. Spitzig, J. D. Verhoeven andF.A. Schmidt, in “Powder Metallurgy Composites”, edited by P. Kumar, K. Vedula and A. Ritter (The Metallurgical Society, Warrendale, Pennsylvania, 1988) p. 97.
Y. D. Yao andS. Foner,Appl. Phys. Lett. 43 (1983) 697.
G. Frommeyer andG. Wassermann,Acta Metall. 23 (1975) 1353.
D. G. Kubisch andT. H. Courtney,Met. Trans. 17A (1986) 1165.
J. D. Verhoeven, F. A. Schmidt, E. D. Gibson andW. A. Spitzig,J. Metals 38 (9) (1986) 20.
J. D. Verhoeven, E. D. Gibson, F. A. Schmidt andD. K. Finnemore,J. Mater. Sci. 15 (1980) 1449.
F. D. Levi,J. Appl. Phys. 31 (1960) 1449.
G. Garmong andL. A. Shepard,Met. Trans. 2 (1971) 175.
B. J. Shaw,Acta Metall. 15 (1967) 1169.
Y. T. Chou,Canad. J. Phys. 45 (1967) 559.
J. Bevk, J. P. Harbison andJ. L. Bell,J. Appl. Phys. 49 (1978) 6031.
W. A. Spitzig, A. R. Pelton andF. C. Laabs,Acta Metall. 35 (1987) 2427.
N. J. Petch,J. Iron Steel Inst. 174 (1953) 25.
E. O. Hall,Proc. Phys. Soc. Lond. B64 (1951) 747.
W. A. Spitzig, P. D. Krotz, L. S. Chumbley, H. L. Downing, andJ. D. Verhoeven,Mater. Res. Soc. Symp. Proc. 120 (1988) 45.
E. E. Underwood, “Quantitative Stereology” (Addison-Wesley, Reading, Massachusetts, 1970) Chs 3 and 4.
M. A. Meyers andK. K. Chawla, “Mechanical Metallurgy” (Prentice Hall, Englewood Cliffs, New Jersey, 1984) Chs 1 and 12.
W. A. Spitzig andP. D. Krotz,Acta Metall. 36 (1988) 1709.
P. D. Funkenbusch andT. H. Courtney,Scripta Metall. 15 (1981) 1349.
J. D. Verhoeven, S. C. Chueh andE. D. Gibson,J. Mater. Sci. 24 (1989) 1748.
R. W. Armstrong, in “Yield, Flow and Fracture of Polycrystals”, edited by T. N. Baker (Applied Science, New York, 1983) Ch. 1.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Go, Y.S., Spitzig, W.A. Strengthening in deformation-processed Cu-20% Fe composites. J Mater Sci 26, 163–171 (1991). https://doi.org/10.1007/BF00576047
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00576047