Experiments in Fluids

, Volume 9, Issue 1–2, pp 65–73 | Cite as

Flow visualization/digital image analysis of saltating particle motions

  • A. D. Ciccone
  • J. G. Kawall
  • J. F. Keffer
Originals

Abstract

A novel flow-visualization/digital-image-analysis technique to obtain quantitative information on individual mono-dispersed silica-sand particle motions in a wind-generated turbulent boundary-layer has been developed and implemented. The technique involves recording particle trajectories, which have been illuminated with a strobed plane of light generated via a He-Ne laser, on 35 mm black and white film with a 35 mm SLR camera, converting the negatives into 512 × 512 digital images, enhancing the images via Fast Fourier Transforms, extracting ‘dashed’ particle lines and then linking the lines together to reconstruct the particle trajectory. The result is a Lagrangian description of the particle path of flight, obtained with the aid of the basic principles of computer vision/artificial intelligence.

Keywords

Fourier Transform Digital Image Basic Principle Fast Fourier Transform Quantitative Information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciccone, A. D. 1988: Flow visualization/digital image analysis of saltating particle motions in a wind-generated boundary-layer. Ph. D. thesis, University of TorontoGoogle Scholar
  2. Ciccone, A. D.; Kawall, J. G.; Keffer, J. F. 1987b: Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis. In: 2nd int. Sym. on transport phenomena in turbulent flows, pp. 613–626. Tokyo: University of TokyoGoogle Scholar
  3. Ciccone, A. D.; Kawall, J. G.; Keffer, J. F. 1987b: Tracking of macroscopic particle motions in flow visualization images. In: The 6th int. cong. on Appl. of laser and electro-optics. Vol. 63, pp. 111–118. San Diego: Laser Institute of AmericaGoogle Scholar
  4. Gonzales, R. C.; Wintz, P. 1977: Digital image processing. Massachusetts: Addison-WesleyGoogle Scholar
  5. Hesselink, L. 1988: Digital image processing in flow visualization. Annu. Rev. Fluid Mech. 20, 421 -485Google Scholar
  6. Hunt, J. C. R.; Nalpanis, P. 1985: Saltation and suspended particles over flat and sloping surfaces. In: Proc. int. workshop on phys. of blown sand. (eds. Barndoroff-Nielsen, O. E.; Meller, J. T.; Rasmussen, K.; Willetts, B. B.). Vol. 1, pp. 9–66. Aarhus: University of AarhusGoogle Scholar
  7. Hunt, J. C. R.; Thomas, N. H.; Auton, T. R.; Sene, K. 1984: Entrapment and transport of bubbles by plunging water. In: Gas transfer at water surfaces, (eds. Brutsaert, W.; Jirka, G. H.). pp. 255–268. Boston: D. ReidelGoogle Scholar
  8. Keffer, J. F. 1988: Applications of digital image processing in turbulent motion. In: 1st world conference on experimental heat transfer, fluid mechanics and thermodynamics, (eds. Shah, R. K.; Ganić, E. N.; Yang, K. T.). pp. 599–607. New York: ElsevierGoogle Scholar
  9. Merzkirch, W. 1974: Flow visualization. New York: Academic PressGoogle Scholar
  10. Morsi, S. A.; Alexander, A. J. 1972: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208Google Scholar
  11. Owen, P. R. 1964: Saltation of uniform grains in air. J. Fluid Mech. 20, 225–242Google Scholar
  12. Pratt, W. K. 1978: Digital image processing. Toronto: WileyGoogle Scholar
  13. Rosenfeld, A.; Kak, A. C. 1982: Digital image processing. Vol. 2. Toronto: Academic PressGoogle Scholar
  14. White, B. R. 1982: Two-phase measurements of saltating turbulent boundary-layer flow. Int. J. Multiphase Flow 8, 459–473Google Scholar
  15. White, B. R.; Schulz, J. C. 1977: Magnus effect in saltation. J. Fluid Mech. 83, 497–512Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. D. Ciccone
    • 1
  • J. G. Kawall
    • 1
  • J. F. Keffer
    • 1
  1. 1.Dept. of Mechanical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations