, Volume 73, Issue 3, pp 153–159 | Cite as

Effect of phytoalexins on hyphal growth and β-glucanases of Phytophthora infestans

  • Peter Stössel
  • Hans R. Hohl


Phytophthora infestans excretes an endo-β-1,3-, an endo-β-1,4-, and aβ-1,3-glucanase (laminarinase), aβ-1,6-glucosidase and possibly small amounts of aβ-1,4-glucosidase. Ether extracts from the infected resistant cultivar Eba but not from the susceptible Bintje inhibited growth of the parasite. Solavetivone and rishitin, two phytoalexins, and the steroid glycoalkaloid tomatine inhibited growth of the fungus and also activities of some of the fungal glucanases, whereas phytuberin, another phytoalexin, and the two phenolic compounds scopoletin and chlorogenic acid inhibited neither fungal growth nor fungal glucanases. The phytoalexin lubimin strongly reduced fungal growth but did not reduce the activities of any of the fungal glucanases tested. A potential role for host derived fungal glucanase inhibitors as factors of resistance in thePhytophthora-potato system is discussed.


Ether Steroid Phenolic Compound Potential Role Fungal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aist, J. R., 1976. Papillae and related wound plugs of plant cells. Annual Review of Phytopathology 14, 145–163.Google Scholar
  2. 2.
    Barras, D. R. & Stone, B. A., 1969.β-1,3-glucan hydrolysis from Euglena gracilis. I. The nature of hydrolases. Biochimica Biophysica Acta 191, 329–341.Google Scholar
  3. 3.
    Bartnicki-Garcia, S., 1966. Chemistry of hyphal walls of Phytophthora. Journal of general Microbiology 42, 57–69.Google Scholar
  4. 4.
    Bartnicki-Garcia, S., 1973. Fundamental aspects of hyphal morphogenesis. In Microbial Differentiation. Ed. by J. M. Ashworth & J. E. Smith, pp. 245–267. University Press, London.Google Scholar
  5. 5.
    Bartnicki-Garcia, S. & Lippman, E., 1967. Enzymic digestion and glucan structure of hyphal walls of Phytophthora cinnamomi. Biochimica Biophysica Acta 136, 533–543.Google Scholar
  6. 6.
    Beczner, J. & Ersek, T., 1976. Fungitoxicity of phytoalexins derived from potato against mycelial growth of Phytophthora infestans. Acta Phytopathologica Academiae Scientiarum Hungarica 11, 59–64.Google Scholar
  7. 7.
    Borrod, G., 1974. Contribution à l'étude du parasitisme du châtaignier par le Phytophthora cinnamomi Rands. Annales de Phytopatalogie 6, 83–90.Google Scholar
  8. 8.
    Clarke, A. E. & Stone, B. A., 1962.β-1,3-glucan hydrolysis from the grape vine (Vitis vinifera) and other plants. Phytochemistry 1, 175–188.Google Scholar
  9. 9.
    Davison, E. M., 1968. Cytochemistry and ultrastructure of hyphae and haustoria of Peronospora parasitica (Pers. ex Fr.) Fr. Annals of Botany 32, 613–621.Google Scholar
  10. 10.
    Dietrich, S. M. C. & Valio, I. F. M., 1973. Effect of coumarin and its derivatives on the growth of Pythium and other fungi. Transactions of the British mycological Society 61, 461–469.Google Scholar
  11. 11.
    Heath, M. C., 1971. Haustorial sheath formation in cowpea leaves immune to rust infection. Phytopathology 61, 383–388.Google Scholar
  12. 12.
    Hohl, H. R., 1975. Levels of nutritional complexity in Phytophthora: lipids, nitrogen sources and growth factors. Phytopathologische Zeitschrift 84, 18–33.Google Scholar
  13. 13.
    Hohl, H. R. & Stössel, P., 1976. Host-parasite interfaces in a resistant and a susceptible cultivar of Solanum tuberosum inoculated with Phytophthora infestans: tuber tissue. Canadian Journal of Botany 54, 900–912.Google Scholar
  14. 14.
    Holten, V. Z. & Bartnicki-Garcia, S., 1972. Intracellularβ-glucanase activity of Phytophthora palmivora. Biochimica Biophysica Acta 276, 221–227.Google Scholar
  15. 15.
    Horikawa, T., Tomiyama, K. & Doke, N., 1976. Accumulation and transformation of rishitin and lubimin in potato tuber tissue infected by an incompatible race of Phytophthora infestans. Phytopathology 66, 1186–1191.Google Scholar
  16. 16.
    Kelley, W. D., 1975. Physiological differences among isolates of Phytophthora cinnamomi. Canadian Journal of Microbiology 21, 1548–1552.Google Scholar
  17. 17.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–275.Google Scholar
  18. 18.
    McIntyre, J. L. & Hankin, L., 1978. An examination of enzyme production by Phytophthora spp. on solid and liquid media. Canadian Journal of Microbiology 24, 75–78.Google Scholar
  19. 19.
    Meyer, R., Parish, R. W. & Hohl, H. R., 1976. Hyphal tip growth in Phytophthora. Archives of Microbiology 110, 215–224.Google Scholar
  20. 20.
    Reuveni, M. & Cohen, Y., 1978. Growth retardation and changes in phenolic compounds, with special reference to scopoletin, in mildewed and ethylene-treated tobacco plants. Physiological Plant Pathology 12, 179–189.Google Scholar
  21. 21.
    Stoessl, A., Unwin, C. H. & Ward, E. W. B., 1972. Post-infectional inhibitors from plants. I. Capsidiol, an antifungal compound from Capsicum frutescens. Phytopathologische Zeitschrift 74, 141–152.Google Scholar
  22. 22.
    Tokunaga, J. & Bartnicki-Garcia, S., 1971. Structure and differentiation of the cell wall of Phytophthora palmivora: cyst, hyphae and sporangia. Archiv für Mikrobiologie 79, 293–310.Google Scholar

Copyright information

© Dr. W. Junk B.V. Publishers 1981

Authors and Affiliations

  • Peter Stössel
    • 1
  • Hans R. Hohl
    • 1
  1. 1.Institute of Plant BiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations