Theoretica chimica acta

, Volume 57, Issue 2, pp 95–106 | Cite as

SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization

  • D. N. Nanda
  • Karl Jug
Original Investigations

Abstract

The development of a new semiempirical SCF MO method (SINDO1) at the INDO level of approximation is described. The method takes an explicit account of the orthogonality of the basis set in the calculation of core-Hamiltonian elements, approximates the effect of the explicitly ignored inner shell electrons through a pseudopotential, allows for a distinction betweenpσ andpπ orbitals on an atom in the calculation of electron-nuclear attraction and employs an improved treatment of the non-diagonal core elements over the prescription used earlier in the SINDO method. A brief comparison of SINDO1 with the MINDO/3 and MNDO procedures is presented.

Key Words

A semiempirical SCF MO method∼SINDO1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. F. Schaefer III: Critical evaluation of chemical and physical structural information, p. 591 ff, D. R. Lide, Jr., M. A. Paul, ed. Washington, D.C.: National Academy of Sciences 1974Google Scholar
  2. 2.
    Hehre, W. J., Ditchfield, R., Radom, L., Pople, J. A.: J. Am. Chem. Soc.92, 4796 (1970)Google Scholar
  3. 3.
    Radom, L., Lathan, W. A., Hehre, W. J., Pople, J. A.: J. Am. Chem. Soc.93, 5339 (1971)Google Scholar
  4. 4.
    Hariharan, P. C., Pople, J. A.: Chem. Phys. Letters16, 217 (1972)Google Scholar
  5. 5.
    Jug, K.: Theoret. Chim. Acta (Berl.)14, 91 (1969)Google Scholar
  6. 6.
    Snyder, L. C.: J. Chem. Phys.46, 3602 (1967)Google Scholar
  7. 7.
    Snyder, L. C., Basch, H.: J. Am. Chem. Soc.91, 2189 (1969)Google Scholar
  8. 8.
    Fischer, H., Kollmar, H.: Theoret. Chim. Acta (Berl.)13, 213 (1969)Google Scholar
  9. 9.
    Boyd, R. J., Whitehead, M. W.: J. Chem. Soc., Dalton Trans.73, 78, 81 (1972)Google Scholar
  10. 10.
    Eaker, C. W., Hinze, J.: J. Am. Chem. Soc.96, 4084 (1974)Google Scholar
  11. 11.
    Pople, J. A., Beveridge, D. L.: “Approximate molecular orbital theory”, New York: McGraw-Hill 1970Google Scholar
  12. 12.
    Baird, N. C., Dewar, M. J. S.: J. Chem. Phys.50, 1262 (1969)Google Scholar
  13. 13.
    Dewar, M. J. S., Haselbach, E.: J. Am. Chem. Soc.92, 590 (1970)Google Scholar
  14. 14.
    Bingham, R. C., Dewar, M. J. S., Lo, D. H.: J. Am. Chem. Soc.97, 1285, 1294, 1302, 1307 (1975); Dewar, M. J. S., Lo, D. H., Ramsden, C. A.: J. Am. Chem. Soc.97, 1311 (1975)Google Scholar
  15. 15.
    Coffey, P., Jug, K.: J. Am. Chem. Soc.95, 7575 (1973)Google Scholar
  16. 16. a.
    Dewar, M. J. S., Thiel, W.: J. Am. Chem. Soc.99, 4899, 4907 (1977)Google Scholar
  17. 16. b.
    Dewar, M. J. S., McKee, M.: J. Am. Chem. Soc.99, 5231 (1977)Google Scholar
  18. 16. c.
    Dewar, M. J. S., Rzepa, H. S.: J. Am. Chem. Soc.100, 58, 777 (1978)Google Scholar
  19. 17.
    Zerner, M. C.: Mol. Phys.23, 963 (1972)Google Scholar
  20. 18.
    Löwdin, P. O.: Proc. Int. Conf. Theoret. Phys. Kyoto, Tokyo, 1953, 599 (1954); McWeeny, R.: Proc. Roy. Soc. (London)A227, 288 (1955); Fischer-Hjalmars, I.: J. Chem. Phys.42, 1962 (1965)Google Scholar
  21. 19.
    Löwdin, P. O.: J. Chem. Phys.18, 365 (1950)Google Scholar
  22. 20.
    Chong, D. P.: Mol. Phys.6, 67 (1965)Google Scholar
  23. 21.
    Brown, R. D., Roby, K. R.: Theoret. Chim. Acta (Berl.)16, 175 (1970)Google Scholar
  24. 22.
    Roby, K. R.: Chem. Phys. Letters11, 6 (1971)Google Scholar
  25. 23.
    Mulliken, R. S.: J. Chim. Phys.46, 497 (1949)Google Scholar
  26. 24.
    Ruedenberg, K.: J. Chem. Phys.34, 1892 (1961); Cusachs, L. C., Cusachs, B. B.: J. Phys. Chem.71, 1060 (1967)Google Scholar
  27. 25.
    Hehre, W. J., Stewart, R. F., Pople, J. A.: J. Chem. Phys.51, 2657 (1969)Google Scholar
  28. 26.
    Burns, G.: J. Chem. Phys.41, 1521 (1964)Google Scholar
  29. 27.
    Zerner, M.: J. Chem. Phys.62, 2788 (1975)Google Scholar
  30. 28.
    Stull, D. R., Prophet, H.: JANAF Thermochemical tables. Washington, D.C.: NBS. 1971Google Scholar
  31. 29.
    Himmelblau, D. M.: Applied nonlinear programming. New York: McGraw-Hill 1972Google Scholar
  32. 30.
    Newton, M. D., Lathan, W. A., Hehre, W. J., Pople, J. A.: J. Chem. Phys.52, 4064 (1970)Google Scholar
  33. 31.
    The error in SINDO1 molecular binding energies has been compared here with the error in the heats of formation given by MINDO/3 and MNDOGoogle Scholar
  34. 32.
    The superior XY bond lengths of MINDO/3 seem fortuitous, considering that few fluorine, no boron or beryllium compounds could be included. Without compounds containing F, B, Be SINDO1 has the same average error as MINDO/3.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • D. N. Nanda
    • 1
  • Karl Jug
    • 1
  1. 1.Theoretische ChemieUniversität HannoverHannoverFederal Republic of Germany

Personalised recommendations