Theoretica chimica acta

, Volume 42, Issue 3, pp 223–236 | Cite as

Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines

  • Joan E. Ridley
  • Michael C. Zerner
Original Investigations


The intermediate neglect of differential overlap technique is modified and applied to the calculation of excited triplet states. The resulting method generally reproduces the transition energies of the better-classified observations within a rms error of 1000 cm−1. Trends are well reproduced, and the calculated orders ofn-π* and π-π* triplet states are in good accord with the experimental information to date.

The method is applied to benzene and the azines. The lowest four triplet states of benzene are calculated in good accord with experiment. Pyridine is calculated to have an-π* triplet nearly degenerate with the lowest lying π-π* triplet, corroborating suggestions of Japar and Ramsay based on experimental information. A detailed analysis is made of the diazines, and assignments are suggested for the higher lying triplet states not yet classified or not yet observed.

Key words

Triplet states, INDO calculations of ∼ Benzene Pyridine Diazines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roothaan, C. C. J.: Rev. Mod. Phys.23, 69 (1951)Google Scholar
  2. 2.
    Roothaan, C. C. J.: Rev. Mod. Phys.32, 179 (1960)Google Scholar
  3. 3.
    Pople, J. A., Nesbet, R. N.: J. Chem. Phys.22, 571 (1954)Google Scholar
  4. 4.
    In general, unrestricted wave functions can be expressed as expansions over restricted functions; see, for example, Amos, T., Snyder, L. C.: J. Chem. Phys.41, 1773 (1964)Google Scholar
  5. 5.
    Löwdin, P. O.: Advan. Chem. Phys.2, 207 (1959)Google Scholar
  6. 6.
    Hartman, A., Zerner, M. C.: Theoret. Chim. Acta (Berl.)37, 47 (1975) and references thereinGoogle Scholar
  7. 7.
    There are reported many interesting studies; see, for example, Bagus, P. S.: Phys. Rev.A619, 139 (1965); Manne, R., Åberg, T.: Chem. Phys. Letters7, 282 (1970); Meyer, W.: J. Chem. Phys.58, 1017(1973)Google Scholar
  8. 8.
    Calculations of the VOCI and ΔE type for parabenzoquinone are compared in Wood, M. H.: Theoret. Chim. Acta (Berl.)36, 345 (1975)Google Scholar
  9. 9.
    Parr, R. G.: Quantum Theory of Molecular Electronic Structure, Chapt. 3, and Refs. therein. New York: Benjamin 1963Google Scholar
  10. 10.
    Pople, J. A., Santry, D. P., Segal, G. A.: J. Chem. Phys.43, S129 (1965); Pople, J. A., Segal, G. A.: J. Chem. Phys.43, S136 (1965);44, 3289 (1966)Google Scholar
  11. 11.
    Del Bene, J., Jaffé, H. H.: J. Chem. Phys.48, 1807 (1968);48, 4050 (1968)Google Scholar
  12. 12.
    Ellis, R. L., Kuehnlenz, G., Jaffé, H. H.: Theoret. Chim. Acta (Berl.)26, 131 (1972)Google Scholar
  13. 13.
    Ridley, J., Zerner, M.: Theoret. Chim. Acta (Berl.)32, 111 (1973)Google Scholar
  14. 14.
    Chang, H. M., Jaffé, H. H., Masmanidis, C. A.: J. Phys. Chem.79, 1118 (1975) and Refs. thereinGoogle Scholar
  15. 15.
    Del Bene, J. E., Ditchfield, R., Pople, J. A.: J. Chem. Phys.55, 2236 (1971)Google Scholar
  16. 16.
    Bunce, N. J., Hadley, M., Ridley, J. E., Zerner, M. C.: submitted for publicationGoogle Scholar
  17. 17.
    Ridley, J. E., Zerner, M. C.: J. Mol. Spectry.50, 457 (1974)Google Scholar
  18. 18.
    Pople, J. A., Beveridge, D. L., Dobosh, P. A.: J. Chem. Phys.47, 2026 (1967)Google Scholar
  19. 19.
    Mulliken, R. S.: J. Chim. Phys.46, 497 (1949)Google Scholar
  20. 20.
    Weiss, K.: Northeastern University, private communicationGoogle Scholar
  21. 21.
    Mataga, N., Nishimoto, K.: Z. Physik. Chem.13, 140 (1957)Google Scholar
  22. 22.
    Clementi, E., Roothaan, C. C. J., Yoshimine, M.: Phys. Rev.127, 1618 (1962)Google Scholar
  23. 23.
    Pariser, R., Parr, R. G.: J. Chem. Phys.21, 767 (1953)Google Scholar
  24. 24.
    Slater, J. C.: Phys. Rev.36, 57 (1930)Google Scholar
  25. 25.
    Hay, P. J., Shavitt, I.: J. Chem. Phys.60, 2865 (1974)Google Scholar
  26. 26.
    Cizek, J., Paldus, J., Hubac, I.: Intern. J. Quantum Chem.8, 951 (1974); Intern. J. Quantum Chem. Symp. No. 8, 293 (1974)Google Scholar
  27. 27.
    Ditchfield, R., Del Bene, J. E., Pople, J. A.: J. Am. Chem. Soc.94, 703 (1972)Google Scholar
  28. 28.
    Giessner-Prettre, C., Pullman, A.: Theoret. Chim. Acta (Berl.)20, 227 (1971)Google Scholar
  29. 29.
    Brabant, C., Salahub, D. R.: Theoret. Chim. Acta (Berl.)23, 285 (1971)Google Scholar
  30. 30.
    Doering, J. P.: J. Chem. Phys.51, 2866 (1969)Google Scholar
  31. 31.
    Astier, R., Meyer, Y. H.: Chem. Phys. Letters3, 399 (1969); Birks, J. B., Chem. Phys. Letters3, 567 (1969)Google Scholar
  32. 32.
    Robin, M. B., Kuebler, N. A., Brundle, C. R. in Electron Spectroscopy, p. 370–373 (D. A. ShirleyEd.). Amsterdam, London: North-Holland 1972Google Scholar
  33. 33.
    Doering, J. P., Moore, Jr., J. H.: J. Chem. Phys.58, 5832 (1973)Google Scholar
  34. 34.
    Japar, S., Ramsay, D. A.: J. Chem. Phys58, 5832 (1973)Google Scholar
  35. 35.
    Hoover, R. J., Kasha, M.: J. Am. Chem. Soc.91, 6508 (1969)Google Scholar
  36. 36.
    Wheatly, P. J.: Acta. Cryst.10, 182 (1957)Google Scholar
  37. 37.
    Hong, H., Robinson, G. W.: J. Mol. Spectry.52, 1 (1974)Google Scholar
  38. 38.
    Hackmeyer, M., Whitten, J. L.: J. Chem. Phys.54, 3739 (1971)Google Scholar
  39. 39.
    El-Sayed, M. A. in: Molecular Luminescence, p. 715 (E. C. LimEd.). New York: Benjamin 1969Google Scholar
  40. 40.
    Cohen, B. J., Goodman, L.: J. Chem. Phys.46, 713 (1967)Google Scholar
  41. 41.
    Bertinotti, F., Giacomello, G., Liquori, A. M.: Acta. Cryst.9, 510 (1956)Google Scholar
  42. 42.
    Innes, K., Tincher, W. C., Pearson, E. F.: J. Mol. Spectry.36, 114Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Joan E. Ridley
    • 1
  • Michael C. Zerner
    • 1
  1. 1.Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of ChemistryUniversity of GuelphGuelphCanada

Personalised recommendations