Sur le mécanisme de l'évagination des disques imaginaux de Drosophile cultivésin vitro: Effets de diverses substances affectant la membrane cellulaire

  • Paul Mandaron
Article

Résumé

Le mécanisme de l'évagination des disques imaginaux de la Drosophile a été étudié en culturein vitro. Des disques de patte pro-, méso- et métathoracique ont été prélevés chez la larve en fin de 3e stade et cultivés en présence ou non d'α-ecdysone et de diverses substances (cytochalasine B, concanavaline A, neuraminidase, trypsine) affectant, chez les Vertébrés, la membrane cellulaire et les mouvements morphogénétiques.

En présence de cytochalasine B, l'évagination des disques isolés est inhibée de façon réversible. La cytochalasine B ne semble pas agir sur un système de microfilaments, qui n'a pu être décelé dans les cellules de disque. Elle n'empêche pas l'ecdysone de se fixer dans la cellule. Elle modifie vraisemblablement les propriétés de la membrane plasmique, bloquant ainsi le changement de forme des cellules, nécessaire à l'évagination.

En présence de concanavaline A, qui se fixe spécifiquement sur les groupements hydroxyles du D-mannopyranose ou D-glucopyranose, l'évagination est inhibée de façon irréversible. L'inhibition peut cependant être levée par l'addition d'α-méthyl-D-glucopyranose dans le milieu ou évitée par un pré-traitement des disques par une solution de trypsine à 0,1 % pendant 2 minutes.

En présence de neuraminidase les disques s'évaginent normalement sous l'influence de l'α-ecdysone; dans quelques cas, la neuraminidase a permis l'évagination partielle des disques en l'absence d'hormone de mue.

Après un traitement par une solution de trypsine à 0,1% pendant 2 minutes, les disques s'évaginent normalement sous l'influence de l'hormone de mue; alors qu'en l'absence d'ecdysone l'évagination n'a jamais été observée. Dans ce dernier cas l'évagination peut être obtenue mécaniquement.

Lorsque l'évagination normale des disques est inhibée par l'une ou l'autre des substances testées, les cellules ne sécrètent ni cuticule nymphale ni cuticule imaginale et ne forment aucune différenciation tégumentaire.

Ces résultats permettent de conclure que le changement de forme des cellules au cours de l'évagination est lié à la modification de la membrane cellulaire. Ces changements des propriétés physico-chimiques de la membrane nécessaires à l'évagination sont vraisemblablement déclenchés, au cours du développement normalin situ, par l'hormone de mue.

On the mechanism of evagination ofDrosophila imaginai discs culturedin vitro: Effects of substances affecting the cell membrane

Summary

The mechanism of evagination of isolated imaginai discs has been studiedin vitro. Pro-, meso-, or metathoracic leg discs were obtained from late 3rd instarDrosophila larvae and cultured in the presence or absence of α-ecdysone and of various substances (cytochalasin B, concanavalin A, neuraminidase, trypsin) known to affect the cell membrane and morphogenetic movements in vertebrates.

In the presence of cytochalasin B, evagination was reversibly inhibited. Cytochalasin B apparently does not act on intracellular microfilaments, which could not be detected in the disc cells. It does not prevent ecdysone from being fixed in the cells. It probably modifies the physico-chemical properties of the plasma membrane, precluding the change in cell shape which is required for evagination.

In the presence of concanavalin A, which binds specifically to hydroxyl groups of D-mannopyranose or D-glucopyranose, evagination was irreversibly inhibited. The inhibitory effect could however be neutralized by the addition of α-methyl-D-glucopyranose in the medium or prevented by pre-treating the discs in a 0.1% trypsin solution for 2 min.

In the presence of neuraminidase, discs evaginated normally under the influence of α-ecdysone; in a few cases, neuraminidase caused partial evagination in the absence of moulting hormone.

After treatment by a 0.1% trypsin solution for 2 min, discs evaginated normally under the influence of the moulting hormone; whereas in the absence of ecdysone, evagination was never observed. In the latter case, evagination could however be obtained by a mechanical pull.

When normal evagination was inhibited by one of the tested substances, cells did not secrete either a pupal or an imaginai cuticle and did not form any integumentary differentiations.

It is concluded that change in cell shape during evagination is related to changes of the cell membrane. The alterations of the physico-chemical properties of the cell membrane, which are required for evagination, are probably caused, during normal development, by the moulting hormone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Alonso, C.: The influence of molting hormone activity on RNA synthesis in isolated polytene nuclei ofDrosophila. Develop. Biol.28, 372–381 (1972)Google Scholar
  2. Berry, S. J., Krishnakumaran, A., Sehneiderman, H. A.: Control of synthesis of RNA and protein in diapausing and injuredCecropia pupae. Science146, 938–940 (1967)Google Scholar
  3. Bluemink, J. G.: Cytokinesis and cytochalasin-induced furrow regression in the first cleavage zygote of Xenopus laevis. Z. Zellforsch.121, 102–106 (1971)Google Scholar
  4. Carter, S. B.: Effects of cytochalasins on mammalian cells. Nature (Lond.)213, 5073, 261–264 (1967)Google Scholar
  5. Chan, L. N., Gehring, W.: Determination of blastoderm cells inDrosophila melanogaster. Proc. nat. Acad. Sci. (Wash.)68, 9, 2217–2221 (1971)Google Scholar
  6. Collins, M. F., Holland, K. D., Sanchez, R.: Regeneration of sialic acid containing components of embryonic cell surfaces. J. exp. Zool.183, 217–224 (1973)Google Scholar
  7. David, J.: Déterminisme des caractères quantitatifs du développement chezDrosophila melanogaster Meigen. I. Influence du milieu et de la constitution génétique. Bull. Biol. Fr. Belg.89, 347–366 (1955)Google Scholar
  8. Emmerich, H.: Ecdysonbindende Proteinfraktionen in den Speicheldrüsen vonDrosophila hydei. Z. vergl. Physiol.68, 385–402 (1970)Google Scholar
  9. Emmerich, H.: Ecdysone binding proteins in nuclei and chromatin fromDrosophila salivary glands. Gen. comp. Endocr.19, 543–551 (1972)Google Scholar
  10. Ephrussi, B., Beadle, G. W.: A technique of transplantation forDrosophila. Amer. Naturalist70, 218–225 (1936)Google Scholar
  11. Fristrom, J. W., Raikow, R., Petri, W., Stewart, D.:In vitro evagination and RNA synthesis in imaginai discs ofDrosophila melanogaster. In: Problems in biology: RNA in development (E. W. Hanly, ed.), p. 381–401. Utah: University of Utah Press, Salt Lake City 1969Google Scholar
  12. Fristrom, J. W.: The biochemistry of imaginai disk development. In: Results and problems in cell differentiation (H. Ursprung, R. Nöthiger, eds.), p. 109–154. Berlin-Heidelberg- New York: Springer 1972Google Scholar
  13. Ginsburg, V., Kobata, A.: Structure and function of surface components of mammalian cells. In: Structure and function of biological membranes (L. I. Rothfield, ed.), p. 439–459. New York: Acad. Press 1971Google Scholar
  14. Goldstein, I. J., Hollerman, C. E., Merrick, J. M.: Protein-carbohydrate interaction. I. The interaction of polysaccharides with concanavalin A. Biochim. biophys. Acta (Amst.)97, 68–76 (1965)Google Scholar
  15. Goldstein, I. J., Hollerman, C. E., Smith, E. E.: Protein-carbohydrate interaction. II. Inhibition studies on the interaction of concanavalin A with polysaccharides. Biochemistry4, 876–883 (1965)Google Scholar
  16. Hadorn, E.: Konstanz, Wechsel und Typus der Determination und Differenzierung in Zellen aus männlichen Genitalanlagen vonDrosophila melanogaster nach Dauerkulturin vivo. Develop. Biol.13, 424–509 (1966)Google Scholar
  17. Hinton, H. E.: Concealed phases in the metamorphosis of insects. Nature (Lond.)157, 552–553 (1968)Google Scholar
  18. Inbar, M., Sachs, L.: Structural difference on sites on the surface membrane of normal and transformed cells. Nature (Lond.)223, 710–712 (1969)Google Scholar
  19. Kambysellis, M. P., Williams, C. M.:In vitro development of insect tissues. I. A macromoecular factor prerequisite for silkworm spermatogenesis. Biol. Bull.141, 527–540 (1971a)Google Scholar
  20. Kambysellis, M. P., Williams, C. M.:In vitro development of insect tissues. II. The role of ecdysone in the spermatogenesis of silkworm. Biol. Bull.141, 541–552 (1971b)Google Scholar
  21. Karlson, P., Sekeris, C. E.: Ecdysone, an insect steroid hormone and its mode of action. Recent Progr. Hormone Res.22, 473–502 (1966a).Google Scholar
  22. Karlson, P., Sekeris, C. E.: Biochemical mechanisms of hormone action. Acta endocr. (Kbh.)53, 505–518 (1966b)Google Scholar
  23. Lallier, R.: Les effets de la concanavaline A sur la fécondation et le développement de l'oeuf de l'oursinParacentrotus lividus. C. R. Acad. Sci. (Paris)272, 12, 1666–1669 (1971)Google Scholar
  24. Malluci, L.: Binding of concanavalin A to normal and transformed cells as detected by immunofluorescence. Nature (Lond.) New. Biol.232, 241–244 (1971)Google Scholar
  25. Mandaron, P.: Sur le mécanisme de l'évagination des disques imaginaux de la Drosophile. Develop. Biol.25, 581–605 (1971)Google Scholar
  26. Mandaron, P.: Effects of α-ecdysone,β-ecdysone and inokosterone on thein vitro evagination ofDrosophila leg discs and the subsequent differentiation of imaginai integumentary structures. Develop. Biol.31, 101–113 (1973)Google Scholar
  27. Mandaron, P., Sengel, P.: Effects of cytochalasin B on the evaginationin vitro of leg imaginai discs. Develop. Biol.32, 201–207 (1973)Google Scholar
  28. Mindek, G.: Metamorphosis of imaginai discs ofDrosophila melanogaster. Wilhelm Roux' Archiv169, 353–356 (1972)Google Scholar
  29. Poodry, C. A., Schneiderman, H. A.: The ultrastructure of the developing leg of Drosophila melanogaster. Wilhelm Roux' Archiv166, 1–44 (1970)Google Scholar
  30. Poodry, C. A., Schneiderman, H. A.: Intercellular adhesivity and pupal morphogenesis inDrosophila melanogaster. Wilhelm Roux' Archiv168, 1–9 (1971)Google Scholar
  31. Sahota, T. S., Mansingh, A.: Cellular response to ecdysone: RNA and protein synthesis in larval tissues of oak silkwormAntheraea pernyi. J. Insect Physiol.16, 1649–1654 (1970)Google Scholar
  32. Sanford, B. H.: An alteration in tumor histocompatibility induced by neuraminidase. Transplantation5, 1273–1279 (1967)Google Scholar
  33. Schroeder, T. E.: The role of contracting ring filaments in dividingArbacia eggs. Biol. Bull.137, 413–414 (1969)Google Scholar
  34. Schroeder, T. E.: Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J. Embryol. exp. Morph.23, 427–462 (1970)Google Scholar
  35. Schroeder, T. E.: The contractile ring. II. Determining its brief existence, volumetric changes, and vital role in cleavingArbacia eggs. J. Cell Biol.53, 419–434 (1972)Google Scholar
  36. Smith, S. B., Revel, J. P.: Mapping of concanavalin A binding sites on the surface of several cell types. Develop. Biol.27, 434–441 (1972)Google Scholar
  37. Spooner, B. S., Wessells, N. K.: An analysis of salivary gland morphogenesis: Role of cytoplasmic microfilaments and microtubules. Develop. Biol.27, 38–54 (1972)Google Scholar
  38. Thamer, G., Karlson, P.: Nachweis der Proteinbildung von Ecdyson bei der SchmeißfliegeCalliphora erythrocephala. Z. Naturforsch.276, 1191–1195 (1972)Google Scholar
  39. Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, N. A., Taylor, E. L., Wressn J. T., Yamada, K. M.: Microfilaments in cellular and developmental processes. Science171, 3967, 135–143 (1971)Google Scholar
  40. Wyatt, G. R.: Insect hormones. In: Biochemical actions of hormones (G. Litwack, ed.), p. 392–490. New York: Acad. Press 1972Google Scholar
  41. Zigmond, S. H., Hirsch, J. G.: Inhibition of D-2-deoxyglucose transport into leukocytes and fibroblasts. Science176, 1432–1434 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Paul Mandaron
    • 1
  1. 1.Laboratoire de Zoologie de l'Université Scientifique et Médicale de GrenobleFrance

Personalised recommendations