Two theorems inr-dimensional renewal theory

  • A. J. Stam


LetZ k ≡ (X k ,Y k ), k = 1,2,..., whereY k Rr−1, be independent with common distribution,E{|X1|} < ∞,E {X I ) =μ > 0 and theY-distribution belonging to the domain of uncentered normal attraction of a stable lawB with exponent α ∃ (0, 2]. LetS n ≡ (S n x ,S n y ) =Z1 + ··· +Z n . If\(U(A)\mathop = \limits^{df} \sum\limits_m {P\left\{ {S_m \in A} \right\}}\),
$$\smallint gdW_t \mathop = \limits^{df} \mu \smallint g\left( {x - t,\lambda \left( t \right)y} \right)dU\left( {x,y} \right),$$
whereλ(t) + (μ−1t)−1/α, andX1 is nonarithmetic,W t converges to the product of Lebesgue measure andB. IfN (t) is the epoch of first entrance into {x≧t} by theSn, the distribution ofSxN(t)-t,λ(t)SyN(t) converges to the product ofR andB, whereR is the well-known limiting distribution ofSxN(t)t. Similar results are obtained for arithmeticXk.


Stochastic Process Probability Theory Lebesgue Measure Mathematical Biology Common Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bickel, P. J., andJ. A. Yahav: Renewal theory in the plane. Ann. math. Statistics36, 946–955 (1965).Google Scholar
  2. 2.
    Feller, W.: An introduction to probability theory and its applications, Vol. II. London-New York: Wiley 1966.Google Scholar
  3. 3.
    Rényi, A.: Wahrscheinlichkeitsrechnung. Berlin: VEB Deutscher Verlag der Wissenschaften 1962.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • A. J. Stam
    • 1
  1. 1.Mathematisch Instituut der RijksuniversiteitGroningenNetherlands

Personalised recommendations