Advertisement

Acta Diabetologica

, Volume 29, Issue 1, pp 34–37 | Cite as

Effects of hyperglycaemia on visual evoked potentials in insulin-dependent diabetic patients

  • V. Martinelli
  • P. M. Piatti
  • M. Filippi
  • M. Pacchioni
  • M. R. Pastore
  • N. Canal
  • G. Comi
Originals

Abstract

Multimodality evoked potentials frequently reveal subclinical involvement of the central nervous system in patients with insulin-dependent diabetes mellitus. We devised this study to evaluate the possible effects of acute hyperglycaemia on visual evoked potential (VEP) parameters in type 1 diabetic patients. A hyperglycaemic clamp (250 mg/dl for 180 min) was performed in ten patients. Monocular pattern reversal VEPs (check size 15′, contrast 50%) were recorded before, and every 30 min after the start of the clamp. Basal VEP latencies and amplitudes were normal bilaterally in nine patients. No significant changes in pattern reversal and flash VEP parameters were observed after the induction or during the clamp period. None of the neurophysiological parameters evaluated during the test was related to the duration of the disease, the basal VEP latency or amplitude or the presence of retinopathy. Our data suggest that the neurophysiological abnormalities detected in insulin-dependent diabetic patients are due to structural involvement of the central nervous pathways and not to functional damage induced by acute short-term hyperglycaemia.

Key words

Visual evoked potentials Hyperglycaemic clamp Central nervous conduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puvanendran K, Devathasan G, Wong PK, Visual evoked responses in diabetes. J Neurol Neurosurg Psychiatry 46:643–647, 1983Google Scholar
  2. 2.
    Cirillo D, Gonfiantini E, De Grandis D, Bongiovanni L, Robert JJ, Pinelli L, Visual evoked potentials in diabetic children and adolescents. Diabetes Care 7:273–275, 1984Google Scholar
  3. 3.
    Comi G, Martinelli V, Galardi G, Medaglini S, Poggi A, Beccaria L, Meschi F, Floris D'Arcais A, Visual evoked potentials in diabetic teenagers: influence of metabolic control and relationship with peripheral neuropathy. Med Ped Syst Ophthalmol 9:85–87, 1986Google Scholar
  4. 4.
    Trick GL, Burde RM, Gordon MO, Kilo C, Santiago JV, Retinocortical conduction time in diabetics with abnormal pattern reversal electroretinograms and visual evoked potentials. Doc Ophthalmol 70:19–28, 1988Google Scholar
  5. 5.
    Algan M, Ziegler O, Gehin P, Got I, Raspiller A, Weber M, Genton P, Saudax E, Drouin P, Visual evoked potentials in diabetic patients. Diabetes Care 12:227–229, 1989Google Scholar
  6. 6.
    Martinelli V, Filippi M, Meschi F, Pozza G, Canal N, Comi GC, Electrophysiological study of optic pathways in insulin dependent diabetes mellitus. Clin Vis Sci 6:437–443, 1991Google Scholar
  7. 7.
    Donald MW, Williams-Erdahl DL, Surridge DHC, Monga TN, Lawson JS, Bird CE, Letemendia FJJ, Functional correlates of reduced central conduction velocity in diabetic subjects. Diabetes 33:627–633, 1984Google Scholar
  8. 8.
    Pozzessere G, Rizzo PA, Valle E, Mollica MA, Meccia A, Murano S, Di Mario U, Andreani D, Morocutti C, Early detection of neurological involvement in IDDM and NIDDM. Multimodal evoked potentials versus metabolic control. Diabetes Care 11:473–480, 1988Google Scholar
  9. 9.
    Cracco J, Castells S, Mark E, Spinal somatosensory evoked potentials in juvenile diabetes. Ann Neurol 15:55–58, 1984Google Scholar
  10. 10.
    Comi G, Locatelli T, Ghilardi MF, Medaglini S, Martinelli V, Mandelli A, Median and tibial somatosensory evoked potentials in diabetes mellitus. In: Morocutti C, Rizzo PA (eds) Evoked potentials: neurophysiological and clinical aspects. Elsevier, Amsterdam, pp 89–96, 1985Google Scholar
  11. 11.
    Galardi G, Locatelli T, Amadio S, Fornara C, Comi G, Studio dei potenziali evocati motori da stimolazione magnetica nei giovani diabetici. Riunione primaverile Societa' Italiana di Elettroencefalografia e Neurofisiologia Clinica. Société de Neurophysiologie Clinique de Langue Francaise, Rome, pp 22–24, 1989Google Scholar
  12. 12.
    Reske-Nielsen E, Lundbaek K, Rafaelsen OJ, Pathological changes in the central and peripheral nervous system of young long-term diabetics. I. Diabetic encephalopathy. Diabetologia 1:233–241, 1965Google Scholar
  13. 13.
    Eliasson SG, Nerve conduction changes in experimental diabetes. J Clin Invest 43:2353–2358, 1964Google Scholar
  14. 14.
    Greene DA, De Jesus PV Jr, Winegrad AI, Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 55:1326–1336, 1975Google Scholar
  15. 15.
    Jacobsen J, Early and preventable changes of peripheral nerve structure and function in insulin-deficient diabetic rats. J Neurol Neurosurg Psychiatry 42:509–518, 1979Google Scholar
  16. 16.
    Gregerson G, Diabetic neuropathy: influence of age, sex, metabolic control, and duration of diabetes on motor conduction velocity. Neurology 17:972–980, 1967Google Scholar
  17. 17.
    Ward JD, Barnes CG, Fisher DJ, Jessup JD, Baker RWR, Improvement in nerve conduction following treatment in newly diagnosed diabetics. Lancet I:428–430, 1971Google Scholar
  18. 18.
    Troni W, Carta Q, Cantello R, Caselle MT, Rainero I, Peripheral nerve function and metabolic control in diabetes mellitus. Ann Neurol 16:178–183, 1984Google Scholar
  19. 19.
    Caroll WM, Kriss A, Baraitsu M, Barret G, Halliday AM, The incidence and nature of visual pathway involvement in Friedreich's ataxia: a clinical and visual potential study of 22 patients. Brain 103:413–434, 1980Google Scholar
  20. 20.
    Halliday AM, McDonald WI, Mushin J, Visual evoked responses in diagnosis of multiple sclerosis. BMJ IV:661–664, 1973Google Scholar
  21. 21.
    Comi G, Martinelli V, Medaglini S, Locatelli T, Filippi M, Canal N, Triulzi F, Del Maschio A, Correlation between multimodal evoked potentials and magnetic resonance imaging in multiple sclerosis. J Neurol 236:4–8, 1989Google Scholar
  22. 22.
    Green JB, Walcoff M, Lucke JF, Phenytoin prolongs far field somatosensory and auditory evoked potentials interpeak latencies. Neurology 32:85–88, 1982Google Scholar
  23. 23.
    Zeneroli ML, Pinelli G, Gollini G, Penne A, Messori E, Zani G, Ventura E, Visual evoked potentials: a diagnostic tool for the assessment of hepatic encephalopathy. Gut 25:291–299, 1984Google Scholar
  24. 24.
    Brown JJ, Sufit RL, Sollinger HW, Visual evoked potential changes following renal transplantation. Electroencephalogr Clin Neurophysiol 66:101–107, 1987Google Scholar
  25. 25.
    Fariello RG, Overview of mechanism of antiepileptic drugs. Annu Courses Am EEG Soc Am Epilepsy Soc, Seattle, 1986Google Scholar
  26. 26.
    Bodis-Wollner I, Onofry M, System disease and visual evoked potential diagnosis in neurology: changes due to synaptic malfunction. Ann N Y Acad Sci 388:327–348, 1981Google Scholar
  27. 27.
    Pozzessere G, Rizzo PA, Valle E, Mollica MA, Sanarelli L, Morano S, Pietravalle P, Di Mario U, Morocutti C, A longitudianl study of multimodal evoked potentials in diabetes mellitus. Diabetes Res 10:17–20, 1989Google Scholar
  28. 28.
    Harrad RA, Cockram CS, Plumb AP, Stone S, Fenwick P, Sonksen PH, The effect of hyperglycaemia on visual function: a clinical and electrophysiological study. Clin Sci 69:673–679, 1985Google Scholar
  29. 29.
    Roberts W, Rapid lens changes in diabetes mellitus. Am J Ophthalmol 33:1283–1285, 1951Google Scholar
  30. 30.
    Smith Holmes C, Hayford JT, Gonzales JL, Weudert JA, A survey of cognitive functioning at different glucose levels in diabetic patients. Diabetes Care 6:180–185, 1983Google Scholar
  31. 31.
    Gold PE, Vogt JA, Hall JL, Glucose effects on memory: behavioral and pharmacological characteristics. Behav Neural Biol 46:145–155, 1986Google Scholar
  32. 32.
    Hall JL, Gonder-Fredericks L, Gold PE, Glucose enhancement of memory in aged humans. Soc Neurosci Abstr 12:1312, 1986Google Scholar
  33. 33.
    Glod PE, Glucose modulation of memory storage. Behav Neural Biol 45:342–349, 1986Google Scholar
  34. 34.
    Moorandian AD, Diabetic complications of the central nervous system. Endocr Rev 9:346–356, 1988Google Scholar
  35. 35.
    Clements RS Jr, New trends in the etiopathogenesis of diabetic neuropathy. In: Andreani D, Crepaldi G, Di Mario U, Pozza G (eds) Diabetic complications: early diagnosis and treatment. Wiley, New York, pp 115–122, 1987Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. Martinelli
    • 1
  • P. M. Piatti
    • 2
  • M. Filippi
    • 1
  • M. Pacchioni
    • 2
  • M. R. Pastore
    • 2
  • N. Canal
    • 1
  • G. Comi
    • 1
  1. 1.Department of Neurology Scientific Institute, St. Raphael HospitalUniversity of MilanItaly
  2. 2.Department of Internal Medicine, Scientific Institute, St. Raphael HospitalUniversity of MilanItaly

Personalised recommendations