Skip to main content
Log in

Abstract

A 5,000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm−2 to 10,000 Jm−2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hc) was 200 Jm−2 and lens threshold (HL) was 7,500 Jm−2. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules.

Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis.

Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared.

Zusammenfassung

Mit Hilfe einer 5 000 W Xenon-Hochdrucklampe und einem Monochromator wurde eine UV-Bestrahlung bei 295 nm Wellenlänge mit einer Bandbreite von 6,6 nm durchgeführt. Dabei wurden die Augen pigmentierter Kaninchen Bestrahlungswerten zwischen 140 Jm−2 und 10000 Jm−2 ausgesetzt und spaltlampenmikroskopisch sowie licht- und elektronenmikroskopisch untersucht. Der Hornhaut-Schwellenwert (Hc) lag bei 200 Jm−2 und der Linsenschwellenwert (HL) bei 7500 Jm−2. Die konstantesten Veränderungen in der Hornhaut bei UV-Bestrahlungen in diesem Schwellenwertbereich waren das Auftreten von Granula im Hornhautepithel.

Weitere histologische Veränderungen bestanden in einem Verlust der oberflächlichen Hornhautepithelzellen und selektiver UV-induzierter Autolyse der sogenannten Flügelzellen. Es wird vermutet, daß die biomikroskopisch sichtbaren Granula die klinische Manifestation der licht- und elektronenmikroskopisch darstellbaren sekundären Lysosomen darstellen. Es wird angenommen, daß die UV-Bestrahlung zu einem Zusammenbruch der Membran primärer Lysosomen und damit zur Freisetzung hydrolytischer Enzyme führt, was die Bildung sekundärer Lysosomen während der Autolyse zur Folge hat.

Extreme Bestrahlungsdosen bei 295 nm führen zu einer nicht mehr abgrenzbaren Zerstörung aller Sichten des Hornhautepithels; Veränderungen an der Hornhautrückseite finden sich dabei allerdings nicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babel J, Leuenberger P (1971) Human keratitis herpetic: Ultrastructure of epithelial lesions before and after IDU treatment. Arch Ophthal (Paris) el, 717–726

  • Beaven GD, Holiday ER (1952) Ultraviolet absorption spectra of proteins and amino acids. Advan Protein Chem 7:319–386

    Google Scholar 

  • Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthal 1 (6):766–783

    Google Scholar 

  • Buschke W, Friedenwald JS, Moses SG (1945) Effects of ultraviolet irradiation on corneal epithelium: mitosis, nuclear fragmentation, post-traumatic cell movements, loss of tissue cohesion. J Cell Comp Physiol 26:147–164

    Google Scholar 

  • Cogan DG, Kinsey VE (1946) Action spectrum of keratitis produced by ultraviolet radiation. Arch Ophthal 35:670–677

    Google Scholar 

  • Cogan D, Kuwabara T, Donaldson D, Collins E (1974) Microcystic dystrophy of the cornea. Arch Ophthal 92:470–474

    Google Scholar 

  • Daniels F Jr (1963) Ultraviolet carcinogenesis in man. InThe First International Conference on the Biology of Cutaneous Cancer (F. Urback, ed.), National Cancer Institute Monograph N 10 (pp 407–418) Bethesda, Maryland

  • Daniels F Jr, Johnson, BE (1974) Normal, physiologic and pathologic effects of solar radiation on the skin. InSunlight and Man, Normal and Abnormal Photobiologic Responses, TB Fitzpatrick et al, eds. University of Tokyo Press, Japan (pp 117–130)

    Google Scholar 

  • Dawson C, Togni B, Moore T (1968) Structural changes in chronic herpetic keratitis: Studies by light and electron microscopy. Arch Ophthal 79:740–747

    Google Scholar 

  • de Duve C, Pressman BC, Gionetto R, Wattieaux R, Applemans F (1955) Tissue fractionation studies; intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–611

    Google Scholar 

  • Duke-Elder WS, Duke-Elder PM (1929) A histological study on the action of short-waved light upon the eye, with a note on “inclusion bodies”. Brit J Ophthal 13:1–37

    Google Scholar 

  • Duke-Elder WS (1972) System of ophthalmology, Vol XIV, Part 2, Non-Mechanical Injuries (pp 912–933) Henry Kimpton, London

    Google Scholar 

  • Hanna C, O'Brien JE (1960) Cell production and migration in the epithelial layer of the cornea. Arch Ophthal 64:536–539

    Google Scholar 

  • Hogan MJ, Alvarado JA, Weddell JE (1971)Histology of the Human Eye, WB Saunders Company, Philadelphia, pp 25–26

    Google Scholar 

  • Hoffmann F, Dumitrescu L, Haase J, Museteanu C (1975) Keratitis dendritica unter dem Raster-Electronenmikroscop, Albrecht v Graefes Arch Ophthal 193:153–160

    Google Scholar 

  • Johnson BE, Johnson F Jr (1969) Lysosomes and the reactions of skin to ultraviolet radiation. J Invest Dermatol 53:85–94

    Google Scholar 

  • Kanai A, Polack FM (1972) Ultramicroscopic changes in the corneal graft stroma during early rejection. Invest Ophthal 10:415–423

    Google Scholar 

  • Kinsey VE (1948) Spectral transmission of the eye to ultraviolet. Arch. Ophthal 39 (4):508–513

    Google Scholar 

  • Koliopoulos JX, Margaritis LH (1979) Response of the cornea to far ultraviolet light: An ultrastructural study. Annals Ophthal 11:765–769

    Google Scholar 

  • Kuwabara T, Ciccarelli E (1964) Meesman's corneal dystrophy. A pathological study. Arch Ophthal 71:676–682

    Google Scholar 

  • Lerche W, Schmolke B (1972) The effect of 5-ethyl-2-deoxyuridine (EDU) on the fine structure of the rabbit corneal epithelium in herpetic keratitis. Albrecht v Graefes Arch Ophthal 184:193–201

    Google Scholar 

  • Maumenee AE, Scholz RO (1948) The histopathology of the ocular lesions produced by the sulfur and nitrogen mustards. Bull Johns Hopk Hosp 83:121–147

    Google Scholar 

  • Mayor HD, Hampton JC, Rosario B (1961) A simple method for removing the resin from epoxyembedded tissue. J Biophys Biochem Cytol 9:909–910

    Google Scholar 

  • Nii S, Morgan C, Rose H (1968) Electronmicroscopy of herpes simplex virus: II. Sequence of Development. J Virol 2:1172–1184

    Google Scholar 

  • Pitts DG, Prince JE, Butcher WI, Kay KR, Bowman RW, Casey HW, Richey DG, Mori LH, Strong JE, Tredici TJ (1969) The effects of ultraviolet radiation on the eye. Monograph No. SAM-TR-69-10. USAF School of Aerospace Medicine. Texas Brooks Air Force Base

    Google Scholar 

  • Pitts DG, Tredici TJ (1971) The effects of ultraviolet on the eye. Am Ind Hyg Assoc J 32:235–246

    Google Scholar 

  • Pitts DG, Gibbons WD (1972) The human, primate and rabbit ultraviolet action spectra. Monograph University of Houston, Houston

    Google Scholar 

  • Pitts DG, Cullen AP (1976) Ocular ultraviolet effects from 295 nm in the rabbit eye. DHEW (NIOSH) Publication No 77-130, Cincinnati, Ohio

  • Pitts DG, Cullen AP, Hacker PD (1977) Ocular effects of ultraviolet radiation from 295 to 365 nm. Invest Ophthal 16 (10): 932–939

    Google Scholar 

  • Rodrigues MM, Fine BS, Laibson PR, Zimmerman LE (1974) Disorders of the corneal epithelium, A. Clinicopathologic study of dot, geographic, and fingerprint patterns. Arch Ophthal 92:475–489

    Google Scholar 

  • Smith KC (1974) The cellular repair of radiation damage. InSunlight and Man, Normal and Abnormal Photobiologic Responses (TB Fitzpatrick et al eds) pp 67–77, University of Tokyo Press, Japan

    Google Scholar 

  • Spencer WH, Hayes TL (1970) Scanning and transmission electron microscopic observations of the topographic anatomy of dendritic lesions in the rabbit. Invest Ophthal 9:183–195

    Google Scholar 

  • Tripathi R, Bron A (1973) Cystic disorders of the corneal epithelium. II Pathogenesis. Brit J Ophthal 57:376–390

    Google Scholar 

  • Trump BF, Smuckler EA, Benditt EP (1961) A method for staining epoxy sections for light microscopy. J Ultrastruct Res 5:343–348

    Google Scholar 

  • Verhoeff FH, Bell L, Walker CB (1916) The pathological effects of radiant energy on the eye: An experimental investigation with a systematic review of the literature. Proc Amer Acad Sci 51:630–818

    Google Scholar 

  • Weissmann G, Dingle JT (1961) Release of lysosomal protease by ultraviolet irradiation and inhibition by hydrocortisone. Exp Cell Res 25:207–210

    Google Scholar 

  • Weissmann G, Fell HB (1962) The effect of hydrocortisone on the response of fetal rat skin in culture to ultraviolet radiation. J Exp Med 116:365–380

    Google Scholar 

  • Yanoff M, Fine BS (1975)Ocular Pathology, A Text and Atlas, Harper & Row, Publishers, Hagerstown, Maryland, pp 4–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, A.P. Ultraviolet induced lysosome activity in corneal epithelium. Albrecht von Graefes Arch. Klin. Ophthalmol. 214, 107–118 (1980). https://doi.org/10.1007/BF00572789

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572789

Keywords

Navigation