Surface and thin film analysis in silicon technology: actual and future problems and demands

  • B. O. Kolbesen
  • W. Pamler
Article

Summary

In order to aim at production yields at economical levels in VLSI (verylargescaleintegration) technology a high degree of process maturity and stability has to be achieved. This requires a comprehensive characterization and control of the materials and processes used, and henceforth, the availability of appropriate analytical methods and tools. Thereby surface and thin film analytical tools play a key role and have to be applied from the very beginning of the development of a device technology. In the course of the full fabrication process a large number of thin films of inorganic (e.g., metals, insulators) and organic (e.g., photoresists) material is deposited, etched and completely or locally removed. The properties and quality of those thin films and the many surfaces and interfaces formed or occurring prior to and after the various processes such as film deposition, wet and dry etching, cleaning and the like have to be characterized and controlled. For the manifold surface analytical tasks nowadays a large number of techniques is available: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), Rutherford backscattering (RBS), total reflexion X-ray fluorescence analysis (TRXFA), plasma chromatography mass spectrometry (PCMS). Here examples are discussed where those methods are applied to problems arising in the process development as well as failure analysis of advanced circuits, in particular a 4 M DRAM (megabitdynamicrandomaccessmemory). Finally, limitations of the available methods and future problems and demands are pointed out.

Keywords

Manifold Failure Analysis Auger Electron Spectroscopy Analytical Task Film Deposition 

Oberflächen- und Dünnschichtanalyse in der Silizium-Technologie: aktuelle und zukünftige Probleme und Anforderungen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Widmann D, Mader H, Friedrich H (1988) In: Heywang W, Müller R (eds) Technologie hochintegrierter Schaltungen. Halbleiter-Elektronik, vol 19. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Sunami H (1985) IEDM Technical Digest 694–697Google Scholar
  3. 3.
    Beinvogl W (1987) ITG-Fachberichte 98:5Google Scholar
  4. 4.
    Beinvogl W, Hopf E (1989) Festkörperprobleme 28 (in press)Google Scholar
  5. 5.
    Mühlhoff HM, Murkin P, Küsters KH, Orlowski M, Müller W (1987) Proc 1st Int Symp on Ultralarge Scale Integration Science and Technology, Electrochem Soc 87-11:632Google Scholar
  6. 6.
    Küsters KH, Mühlhoff HM, Enders G, Mohr EG, Müller W (1987) Proc 1st Int Symp on Ultralarge Scale Integration Science and Technology, Electrochem Soc 87-11:640Google Scholar
  7. 7.
    Kolbesen BO, Strunk H (1985) In: Huff HR, Einspruch NG (eds) VLSI-electronics: microstructure science, vol 12. Silicon materials. Academic Press, New York, p 143Google Scholar
  8. 8.
    Schwenke H, Knoth J (1982) Nucl Instrum Methods 193:239Google Scholar
  9. 9.
    Eichinger P, Rath HJ, Schwenke H (1988) In: Gupta DC (ed) Semiconductor fabrication: technology and metrology. ASTM STP990Google Scholar
  10. 10.
    Penka V, Hub W (1989) Spectrochimica Acta (in press)Google Scholar
  11. 11.
    Penka V, Hub W (1988) Paper presented at the 5. Arbeitstagung für Angewandte Oberflächenanalytik, JülichGoogle Scholar
  12. 12.
    Carr TW (1984) Plasma chromatography. Plenum Press, New YorkGoogle Scholar
  13. 13.
    Briggs D, Riviere JC (1983) In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester, p 87Google Scholar
  14. 14.
    Mühlhoff L (1989) Paper presented at the 5. Arbeitstagung für Angewandte Oberflächenanalytik, Jülich. Fresenius Z Anal Chem 333:527–530Google Scholar
  15. 15.
    Nicolet MA (1978) Thin Solid Films 52:415Google Scholar
  16. 16.
    Cheung N, von Seefeld H, Nicolet MA (1980) Proc Electrochem Soc 80:323Google Scholar
  17. 17.
    Maeda T, Shima S, Nakayama T, Kakumu M, Mori K, Iwabuchi S, Aoki R, Matsunaga J (1985) IEDM, Digest of Technical Papers, p 257Google Scholar
  18. 18.
    Seah MP (1983) In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester, p 181Google Scholar
  19. 19.
    Sundgren JE, Johansson BO, Karlsson SE (1983) Thin Solid Films 105:353Google Scholar
  20. 20.
    Ahn KY, Wittmer M, Ting CY (1983) Thin Solid Films 107:45Google Scholar
  21. 21.
    Johansson BO, Sundgren JE, Greene JE, Rockett A, Bernett SA (1985) J Vac Sci Technol A3:303Google Scholar
  22. 22.
    Wittmer M (1982) J Appl Phys 53:1007Google Scholar
  23. 23.
    Oehrlein GS (1986) Phys Today 39:26Google Scholar
  24. 24.
    Flamm DL, Mucha JA (1987) In: Moss SJ, Ledwith A (eds) The chemistry of the semiconductor industry. Blackie, Glasgow, p 343Google Scholar
  25. 25.
    Ebel MF (1978) J Electron Spectrosc Relat Phenom 14:287Google Scholar
  26. 26.
    Segner J, Mohr EG (1985) Proc 3e Symposium Internationale sur la Gravure Seche et le Depot Plasma en Microelectronique, Cachan/Paris, p 85Google Scholar
  27. 27.
    Yates K, West RH (1983) Surf Interface Anal 5:217Google Scholar
  28. 28.
    Chaney RL (1987) Surf Interface Anal 10:36Google Scholar
  29. 29.
    Krizek J, Berresheim K, Panzner G, Hochkirchen J (1987) Fresenius Z Anal Chem 329:139Google Scholar
  30. 30.
    Hösler W (1989) Paper presented at the 5. Arbeitstagung für Angewandte Oberflächenanalytik, Jülich. Fresenius Z Anal Chem 333:315–317Google Scholar
  31. 31.
    Engelhardt M, Schwarzl S (1988) Proc Symp Dry Process, Electrochem Soc 88-7, p 48Google Scholar
  32. 32.
    Uchida H, Miyai Y, Inoue M (1988) Proc Symp Dry Process Electrochem Soc, 88-7:55Google Scholar
  33. 33.
    Magee CW, Amberiadis KG (1986) In: Benninghoven A, Colton RJ, Simons DS, Werner HW (eds) Secondary ion mass spectrometry SIMS V. Springer, Berlin Heidelberg New York, p 279Google Scholar
  34. 34.
    Tanigaki T, Kawado S, Nishiyama K (1984) In: Benninghoven A, Okano J, Shimizu R, Werner HW (eds) Secondary ion mass spectrometry SIMS IV. Springer, Berlin Heidelberg New York, p 305Google Scholar
  35. 35.
    Schaber H, von Criegern R, Weitzel I (1985) J Appl Phys 58:4036Google Scholar
  36. 36.
    Böhm HJ, Wendt H, Oppolzer H, Masseli K, Kassing R (1987) J Appl Phys 62:2784Google Scholar
  37. 37.
    Kakoschke R, Binder H, Röhl S, Masseli M, Rangelov IW, Saler S, Kassing R (1987) Nucl Instrum Methods Phys Res B21:142Google Scholar
  38. 38.
    von Criegern R, Zeininger H, Röhl S (1988) Proc 6th Int Conf Secondary Ion Mass Spectrometry, “SIMS VI”, Versailles, 1987. Wiley, New York, p 419Google Scholar
  39. 39.
    Haudek H (1988) Proc 13. Vortragsveranstaltung des Arbeitskreises Rastermikroskopie in der Materialprüfung. Deutscher Verband für Materialprüfung e.V. p 57Google Scholar
  40. 40.
    Horiguchi F, Nitayama A, Hieda K et al. (1987) Technical Digest of the International Electron Devices Meeting 1987 (IEDM-87), Washington, p 324Google Scholar
  41. 41.
    Beamson G, Porte HQ, Turner DW (1981) Nature 290:556Google Scholar
  42. 42.
    Gaarenstroom SW (1981) Appl Surface Sci 7:7; J Vac Sci Technol (1982) 20:458Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • B. O. Kolbesen
    • 1
  • W. Pamler
    • 1
  1. 1.Components Division, Semiconductor TechnologySiemens AGMünchen 83Federal Republic of Germany

Personalised recommendations