Advertisement

The ultrastructural arrangement of thrombosthenin in glycerol extracted thrombocytes

  • D. Graf Keyserlingk
  • K. Struwe
Article

Summary

The ultrastructure of glycerol extracted thrombocyte models was studied before and after incubation with ATP and under the influence of Salyrgan as inhibitor of contraction. The contractile system of the thrombocytes—thrombosthenin—consists of a spatial network of 50 Å wide thrombosthenin A and 100–120 Å wide thrombosthenin M filaments. At rest, the contractile system is arranged in a marginal zone. The ATP-induced contraction led to a concentric condensation of the network which resulted in a central cluster of cell organelles and at a later stage, disruption of the plasma membrane and release of the thrombocyte granules. All these changes which also occur during the formation of the hemostatic plug in vivo are therefore attributed to the reaction of the contractile protein.

Key words

Thrombocytes Thrombosthenin ATP Ultrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnke, O., Kristensen, B. J., Nielsen, L. E.: Electron microscopical observations on actinoid and myosinoid filaments in blood platelets. J. Ultrastruct. Res.37, 351–369 (1971).Google Scholar
  2. Behnke, O., Zelander, T.: Substructure in negatively stained microtubules of mammalian blood platelets. Exp. Cell Res.43, 236–238 (1966).Google Scholar
  3. Bettex-Galland, M., Lüscher, E. F.: Extraction of an actomyosin-like protein from human thrombocytes. Nature (Lond.)184, 276–279 (1959).Google Scholar
  4. Bettex-Galland, M., Lüscher, E. F.: Thrombosthenin—a contractile protein from thrombocytes. Its extraction from human blood platelets and some of its properties. Biochim. biophys. Acta (Amst.)49, 563–547 (1961).Google Scholar
  5. Bettex-Galland, M., Lüscher, E. F.: Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins. Advanc. Protein Chem.20, 1–35 (1965).Google Scholar
  6. Bettex-Galland, M., Lüscher, E. F., Weibel, E. R.: Thrombosthenin—Electron microscopical studies on its localization in human blood platelets and some properties of its subunits. Thrombos. Diathes. haemorrh. (Stuttg.)22, 431–449 (1969).Google Scholar
  7. Bettex-Galland, M., Portzehl, H., Lüscher, E. F.: Dissociation of thrombosthenin into two components comparable with actin and myosin. Nature (Lond.)193, 777–778 (1962).Google Scholar
  8. Booyse, F. M., Sternberger, L. A., Zschocke, D., Rafelson, M. E.: Ultrastructural localization of contractile protein (Thrombosthenin) in human platelets using an unlabeled antibody-peroxidase staining technique. J. Histochem. Cytochem.19, 540–550 (1971).Google Scholar
  9. Born, G. V. R.: Mechanism of platelet aggregation and of its inhibition by adencsine derivatives. Fed. Proc.26, 115–117 (1967).Google Scholar
  10. Cohen, J., Bohak, Z., Vries, A., de, Katchalski, E.: Thrombosthenin M. Purification and interaction with thrombin. Europ. J. Biochem.10, 388–394 (1969).Google Scholar
  11. Ebert, J.C., Schimmelbusch, C.: Experimentelle Untersuchungen über Thrombose. Virchows Arch. path. Anat.103, 39–87 (1886).Google Scholar
  12. Grette, K.: The contractile protein of the platelets. Studies on the mechanism of thrombin catalyzed hemostatic reactions in blood platelets. Acta physiol. scand.56, Suppl. 195 (1962).Google Scholar
  13. Hoffmann-Berling, H.: Adenosintriphosphat als Betriebsstoff von Zellbewegungen. Biochim. biophys. Acta (Amst.)14, 182–194 (1954).Google Scholar
  14. Huxley, H. E.: The double array of filaments in cross striated muscle. J. biophys. biochem. Cytol.3, 631–648 (1957).Google Scholar
  15. Huxley, H. E.: Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. molec. Biol.7, 281–308 (1963).Google Scholar
  16. Kelly, R. E., Rice, R. V.: Localization of myosin filaments in smooth muscle. J. Cell Biol.37, 105–116 (1968).Google Scholar
  17. Keyserlingk, D. G.: Kontraktilität und Ultrastruktur glycerin-extrahierter Fibroblasten aus der Gewebekultur. Protoplasma67, 391–406 (1969).Google Scholar
  18. Keyserlingk, D. G.: Über die Bedeutung des intracellularen, kontraktilen Systems für die Lokomotion der Fibroblasten. Cytobiologie1, 259–272 (1970a).Google Scholar
  19. Keyserlingk, D. G.: Ultrastruktur glycerinextrahierter Dünndarmmuskelzellen der Ratte vor und nach Kontraktion. Z. Zellforsch.111, 559–571 (1970b).Google Scholar
  20. Keyserlingk, D. G.: The ultrastructure of contractile elements in smooth muscle cells during various functional stages. In: Vascular smooth muscle (ed. by E. Betz) p. 121–124. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  21. Movat, H. Z., Weiser, W. J., Glynn, M. F., Mustard, J. F.: Platelet phagocytosis and aggregation. J. Cell Biol.27, 531–542 (1965).Google Scholar
  22. Portzehl, H.: Gemeinsame Eigenschaften von Zell- und Muskelkontraktilität. Biochim. biophys. Acta (Amst.)14, 195–202 (1954).Google Scholar
  23. Rodman, N. F., Mason, R. G.: Platelet-platelet interaction: relationship to hemostasis and thrombosis. Fed. Proc.26, 95–105 (1967).Google Scholar
  24. Rodman, N. F., Mason, R. G., McDevitt, N. B., Brinkhous, K. M.: Morphologic alterations of human blood platelets during early phases of clotting. Amer. J. Path.40, 271–284 (1962).Google Scholar
  25. Rodman, N. F., Painter, J. C., McDevitt, N. B.: Platelet disintegration during clotting. J. Cell Biol.16, 225–241 (1963).Google Scholar
  26. Salzman, E. W., Chambers, D. A., Neri, L. L.: Possible mechanism of aggregation of blood platelets by adenosine diphosphate. Nature (Lond.)210, 167–169 (1966).Google Scholar
  27. Schulz, H.: Thrombocyten und Thrombose im elektronenmikroskopischen Bild, S. 76–77. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  28. Weber, H. H., Portzehl, H.: Kontraktion, ATP-Cyclus und fibrilläre Proteine des Muskels. Ergebn. Physiol.47, 369–468 (1952).Google Scholar
  29. Weissenfels, N., Schäfer-Danneel, S.: Nachweis des kontraktilen Substrats im Grundplasma gezüchteter Zellen. Zool. Anz., Suppl.-Bd.33, 383–388 (1969).Google Scholar
  30. White, J. G.: The substructure of human platelet microtubules. Blood32, 638–644 (1968).Google Scholar
  31. Zucker-Franklin, D., Bloomberg, N.: Microfibrils of blood platelets: Their relationship to microtubules and the contractile protein. J. clin. Invest.48, 165–175 (1969).Google Scholar
  32. Zucker-Franklin, D., Nachman, R. L., Marcus, A. J.: Ultrastructure of thrombosthenin, the contractile protein of human blood platelets. Science157, 945–947 (1967).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • D. Graf Keyserlingk
    • 1
  • K. Struwe
    • 1
  1. 1.Anatomisches Institut der Freien Universität BerlinGermany

Personalised recommendations